A physical parameter a can be determined by measuring the parameters $b, c, d $ and $e $ using the relation $a =$ ${b^\alpha }{c^\beta }/{d^\gamma }{e^\delta }$. If the maximum errors in the measurement of $b, c, d$ and e are ${b_1}\%$, ${c_1}\%$, ${d_1}\%$ and ${e_1}\%$, then the maximum error in the value of a determined by the experiment is
(${b_1}\, + \,{c_1}\, + \,{d_1}\, + \,{e_1}$)$\%$
(${b_{1\,}}\, + \,{c_1}\, - \,{d_1}\, - \,{e_1}$)$\%$
($\alpha {b_1}\, + \,\beta {c_1}\, - \,\gamma {d_1}\, - \delta {e_1}$)$\%$
($\alpha {b_1} + \,\beta {c_1}\, + \,\gamma {d_1}\, + \,\delta {e_1}$)$\%$
Two resistors ${R}_{1}=(4 \pm 0.8) \Omega$ and ${R}_{2}=(4 \pm 0.4)$ $\Omega$ are connected in parallel. The equivalent resistance of their parallel combination will be
The length, breadth and thickness of a strip are $(10.0 \pm 0.1)\; cm ,(1.00 \pm 0.01) \;cm$ and $(0.100 \pm 0.001)\; cm$ respectively. The most probable error in its volume will be?
Explain least count and least count error. Write a note on least count error.
The length of a uniform rod is $100.0 \,cm$ and radius is $1.00 \,cm$. If length is measured with a meter rod having least count $1 \,mm$ and radius is measured with vernier callipers having least count $0.1 \,mm$, the percentage error in calculated volume of cylinder is ............. $\%$
An experiment measures quantities $a, b$ and $c$, and quantity $X$ is calculated from $X=a b^{2} / c^{3}$. If the percentage error in $a$, $b$ and $c$ are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$, respectively, then the percentage error in $X$ will be