एक भौतिक प्राचल $(Physical parameter) a$ का मान $ [a =$ ${b^\alpha }{c^\beta }/{d^\gamma }{e^\delta }]$ सम्बन्ध के प्रयोग से $b, c, d $ तथा $e$ प्राचलों को मापकर निर्धारित किया जाता है। यदि $b, c, d $ तथा $e$ में अधिकतम त्रुटियाँ क्रमश: ${b_1}\%$, ${c_1}\%$, ${d_1}\%$ तथा ${e_1}\%$, हैं तो प्रयोग द्वारा a के मापन में अधिकतम त्रुटि होगी
(${b_1}\, + \,{c_1}\, + \,{d_1}\, + \,{e_1}$)$\%$
(${b_{1\,}}\, + \,{c_1}\, - \,{d_1}\, - \,{e_1}$)$\%$
($\alpha {b_1}\, + \,\beta {c_1}\, - \,\gamma {d_1}\, - \delta {e_1}$)$\%$
($\alpha {b_1} + \,\beta {c_1}\, + \,\gamma {d_1}\, + \,\delta {e_1}$)$\%$
यदि सभी स्वतंत्र राशियों (independent quantities) की मापन त्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की त्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को त्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो
$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$
$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी
$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$
उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।
($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है $(\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी ?
$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$
($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है $\mid$ यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, है
$(A) 0.04$ $(B) 0.03$ $(C) 0.02$ $(D) 0.01$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
एक धात्विक तार का द्रव्यमान $(0.4 \pm 0.002)\,g$, त्रिज्या $(0.3 \pm 0.001)\,mm$ तथा लम्बाई $(5 \pm 0.02)\,cm$ है। घनत्व के मापन में अधिकतम संभव त्रुटि लगभग $.....\%$ होगी :
एक शंकु की विमायें अल्पत्मांक $2 \ mm$ के एक पैमाने से मापे जाने पर उसके आधार का व्यास तथा ऊँचाई, दोनों, $20.0 \ cm$ पाये जाते हैं। इस शंकु का आयतन ज्ञात करने में अधिकतम प्रतिशत त्रुटि का मान .......... होगा|
किसी प्रयोग में चार राशियों $a , b , c$ तथा $d$ के मापन (नापने) में क्रमश: $1 \%, 2 \%, 3 \%$ तथा $4 \%$ की त्रुटि होती है। एक राशि $P$ का मान निम्नलिखित रूप से परिकलित किया जाता है : $P =\frac{ a ^{3} b ^{3}}{ cd }$ तो $P$ के मापन में प्रतिशत .......$(\%)$ त्रुटि होगी
द्रव्यमान तथा चाल के मापन से प्राप्त द्रव्यमान तथा चाल में प्रतिशत त्रुटियाँ क्रमश: $2\%$ तथा $3\%$ हैं। गतिज ऊर्जा की गणना में अधिकतम त्रुटि ......... $\%$ होगी