एक भौतिक राशि $Q$ सम्बन्ध $Q=\frac{\mathrm{a}^4 \mathrm{~b}^3}{\mathrm{c}^2}$ के अनुसार $\mathrm{a}, \mathrm{b}$ तथा $\mathrm{c}$ राशियों पर निर्भर करती है। $\mathrm{a}, \mathrm{b}$ तथा $\mathrm{c}$ में प्रतिशत त्रुटियों क्रमशः $3 \%, 4 \%$ तथा $5 \%$ है। तब $\mathrm{Q}$ में प्रतिशत त्रुटि है :
$66 \%$
$43 \%$
$34 \%$
$14 \%$
गोले की त्रिज्या के मापन में त्रुटि $0.2\%$ है। इसके आयतन की गणना में त्रुटि ......... $\%$ होगी
एक बेलन की लम्बाई मीटर छड़ से मापी जाती है जिसका अल्पतमांक $0.1 \;cm$ है। इसका व्यास वर्गीयर कैलीपर से मापा जाता है जिसका अल्पतमांक $0.01\; cm$ है। जिसकी लम्बाई $5.0 \;cm$ तथा त्रिज्या $2.00 \;cm$ दि गई है। तो आयतन में प्रतिशत त्रुटि होगी।
अंर्तरास्ट्रीय एवोगाड्रो कोआर्डिनशन परियोजना (The International Avogadro Coordination Project) ने क्रिस्टलीय सिलिकन का उपयोग कर विश्व का सबसे सटीक गोलक बनाया है। इस गोलक का व्यास $9.4 \,cm$ है, तथा व्यास मापने में अनिश्रितता $0.2 \,nm$ है | क्रिस्टल में परमाणु, $a$ भुजा वाले घनों में संकुलित है। घन की भुजा को $2 \times 10^{-9}$ सापेक्षिक त्रुटि से मापा जाता है, एवं प्रत्येक घन में $8$ परमाणु हैं। गोलक के द्रव्यमान में सापेक्षिक त्रुटि निम्न में से किस के करीब होगी ? (मान लीजिए कि सिलिकन का मोलर द्रव्यमान एवं एवोगाड्रो संख्या के मान एकदम सटीक रूप से मालूम हैं।)
किसी घड़ी द्वारा मापे गए समय अन्तरालों के पाठयांक नीचे दिए गए हैं:
$1.25 \,s , 1.24 \,s , 1.27\, s , 1.21 \,s$ और $1.28s$
इन प्रेक्षणों की आपेक्षिक प्रतिशत त्रुटि $........\,\%$ है?
$(0.4 \pm 0.01) \mathrm{g}$ द्रव्यमान के एक बेलनाकार तार की लम्बाई $(8 \pm 0.04) \mathrm{cm}$ एवं त्रिज्या $(6 \pm 0.03) \mathrm{mm}$ है। इसके घनत्व में अधिकतम त्रुटि $........\%$ होगी: