- Home
- Standard 11
- Physics
8.Mechanical Properties of Solids
easy
A piece of copper having a rectangular cross-section of $15.2 \;mm \times 19.1 \;mm$ is pulled in tenston with $44,500\; N$ force, productng only elastic deformation. Calculate the resulting strain?
A
$3.65 \times 10^{-3}$
B
$6.52 \times 10^{-4}$
C
$5.88 \times 10^{-4}$
D
$7.46 \times 10^{-5}$
Solution
Area of the copper piece:
$A=l \times b=19.1 \times 10^{-3} \times 15.2 \times 10^{-3}=2.9 \times 10^{-4} m ^{2}$
Tension force applied on the piece of copper, $F=44500 N$
Modulus of elasticity of copper, $\eta=42 \times 10^{9} N / m ^{2}$
Modulus of elasticity, $\eta=\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{F}{A}}{\text { Strain }}$
$\therefore$ Strain $=\frac{F}{A \eta}$
$=\frac{44500}{2.9 \times 10^{-4} \times 42 \times 10^{9}}$
$=3.65 \times 10^{-3}$
Standard 11
Physics