એક વિદ્યુતચુંબકીય તરંગ $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$ દિશામાં પ્રવર્તે છે જ્યાં તેનું પોલારાઈજેશન $\hat{\mathrm{k}}$ દિશામાં છે.તો ચુંબકીયક્ષેત્રનું સાચું સ્વરૂપ નીચે પૈકી કયું હશે?
$\mathrm{B}_{0} \frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}-\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$
$\mathrm{B}_{0} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}-\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$
$\mathrm{B}_{0} \hat{\mathrm{k}} \cos \left(\omega \mathrm{t}-\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$
$\mathrm{B}_{0} \frac{\hat{\mathrm{j}}-\hat{\mathrm{i}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}+\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$
વિદ્યુતચુંબકીય તરંગો માટે વિદ્યુતક્ષેત્ર અને ચુંબકીયક્ષેત્ર ....... હોય છે.
${\varepsilon _0}$ અને ${\mu _0}$ એ અનુક્રમે શૂન્યાવકાશમાં વિદ્યુત પરમિટિવિટી અને ચુંબકીય પરમીએબીલીટી છે. માધ્યમમાં તેને અનુરૂપ રાશિ $\varepsilon $ અને $\mu $ હોય, તો માધ્યમનો વક્રીભવનાંક શું થાય?
વિદ્યુતચુંબકીય તરંગોનો વેગ ........ માટે એકસમાન હોય છે.
$E = 7.7\,k\,V /m$ જેટલા વિદ્યુતક્ષેત્ર અને $B = 0.14\,T$ જેટલા ચુંબકીયક્ષેત્રમાં ગતિ કરતો આયન વિચલન અનુભવતો નથી તો તેનો વેગ $km/s$ માં કેટલો હશે?
વિધુતચુંબકીય તરંગ ની આવૃતિ $2.0 \times 10^{10}\, Hz$ અને ઊર્જા ધનતા $1.02 \times 10^{-8}\, J / m ^{3}$ છે. તો તરંગમાં ચુંબકીયક્ષેત્ર નો કંપવિસ્તાર $....nT$