8.Electromagnetic waves
medium

एक समतल विधुत चुम्बकीय तरंग, जो निर्वात में $x$ दिशा में चल रही है, का विधुत क्षेत्र $\overrightarrow{ E }= E _{0} \hat{ j } \cos (\omega t - kx )$. है। समय $t =0$ पर इसका चुम्बकीय क्षेत्र होगा ।

A

$\mathrm{B}_{0} \frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}-\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$

B

$\mathrm{B}_{0} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}-\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$

C

$\mathrm{B}_{0} \hat{\mathrm{k}} \cos \left(\omega \mathrm{t}-\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$

D

$\mathrm{B}_{0} \frac{\hat{\mathrm{j}}-\hat{\mathrm{i}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}+\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$

(JEE MAIN-2020)

Solution

Direction of polarisation $=\hat{\mathrm{E}}=\hat{\mathrm{k}}$

Direction of propagation $=\hat{\mathrm{E}} \times \hat{\mathrm{B}}=\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}$

$\therefore \hat{\mathrm{E}} \times \hat{\mathrm{B}}=\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}$

$\hat{\mathrm{B}}=\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.