- Home
- Standard 12
- Physics
$+ 1\,\mu C$ જેટલો વિજભાર ધરાવતો બિંદુવત વિજભાર $(0, 0, 0) $ પર છે. એક વિજભારરહિત વાહક ગોળાનું કેન્દ્ર $(4, 0, 0)$ આગળ છે. તો ગોળાના કેન્દ્ર આગળ વિદ્યુતસ્થિતિમાન અને વિદ્યુતક્ષેત્ર કેટલું મળે?
$1.8\times 10^5\,V$ અને $- 5.625 \times 10^6\,V/m$
$0\,V$ અને $0\,V/m$
$2.25 \times 10^5\,V$ અને $-5.625 \times 10^6\,V/m$
$2.25 \times 10^5\,V$ અને $0\,V/m$
Solution
$\mathrm{q}=1\, \mu \mathrm{C}=1 \times 10^{-6} \,\mathrm{C}$
$r=4\, \mathrm{cm}=4 \times 10^{-2}\, \mathrm{m}$
$ \text { Potential } V =\frac{\mathrm{k} q}{\mathrm{r}} $
$=\frac{9 \times 10^{9} \times 10^{-6}}{4 \times 10^{-2}} $
$=2.25 \times 10^{5}\, \mathrm{V} $
Induced electric field $\mathrm{E}=-\frac{\mathrm{kq}}{\mathrm{r}^{2}}$
$=\frac{9 \times 10^{9} \times 1 \times 10^{-6}}{16 \times 10^{-4}}=-5.625\, \times 10^{6}\, \mathrm{V} / \mathrm{m}$