4.Moving Charges and Magnetism
hard

A positive charge $'q'$ of mass $'m'$ is moving along the $+ x$ axis. We wish to apply a uniform magnetic field $B$ for time $\Delta t$ so that the charge reverses its direction crossing the $y$ axis at a distance $d.$ Then

A

$B\, = \,\frac{{mv}}{{qd}}$ and $\Delta t\, = \,\frac{{\pi d}}{v}$

B

$B\, = \,\frac{{mv}}{{2qd}}$ and $\Delta t\, = \,\frac{{\pi d}}{2v}$

C

$B\, = \,\frac{{2mv}}{{qd}}$ and $\Delta t\, = \,\frac{{\pi d}}{2v}$

D

$B\, = \,\frac{{2mv}}{{qd}}$ and $\Delta t\, = \,\frac{{\pi d}}{v}$

(JEE MAIN-2014)

Solution

The applied magnetic field provides the required centripetal force to the charge particle, so it can move in circular path of radius $\frac{d}{2}$

$\therefore \mathrm{Bqv}=\frac{\mathrm{mv}^{2}}{\mathrm{d} / 2}$

or, $B = \frac{{2{\text{mv}}}}{{{\text{qd}}}}$

Time interval for which a uniform magnetic field is applied

$\Delta t=\frac{\pi \cdot \frac{d}{2}}{v}$

(particle reverses its direction after time $\Delta t$ by covering semi circle).

$\Delta \mathrm{t}=\frac{\pi \mathrm{d}}{2 \mathrm{v}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.