A quantity $f$ is given by $f=\sqrt{\frac{{hc}^{5}}{{G}}}$ where $c$ is speed of light, $G$ universal gravitational constant and $h$ is the Planck's constant. Dimension of $f$ is that of

  • [JEE MAIN 2020]
  • A

    Momentum

  • B

    Area

  • C

    Energy

  • D

    Volume

Similar Questions

If energy $(E),$ velocity $(V)$ and time $(T)$ are chosen as the fundamental quantities, the dimensional formula of surface tension will be

  • [AIPMT 2015]

An artificial satellite is revolving around a planet of mass $M$ and radius $R$ in a circular orbit of radius $r$. From Kepler’s third law about the period of a satellite around a common central body, square of the period of revolution $T$ is proportional to the cube of the radius of the orbit $r$. Show using dimensional analysis that $T\, = \,\frac{k}{R}\sqrt {\frac{{{r^3}}}{g}} $, where $k$ is dimensionless constant and $g$ is acceleration due to gravity.

In equation $y=x^2 \cos ^2 2 \pi \frac{\beta \gamma}{\alpha}$, the units of $x, \alpha, \beta$ are $m , s ^{-1}$ and $\left( ms ^{-1}\right)^{-1}$ respectively. The units of $y$ and $\gamma$ are

If the velocity of light $c$, universal gravitational constant $G$ and planck's constant $h$ are chosen as fundamental quantities. The dimensions of mass in the new system is

  • [JEE MAIN 2023]

If orbital velocity of planet is given by $v = {G^a}{M^b}{R^c}$, then