- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
If the distance between the foci of an ellipse is half the length of its latus rectum, then the eccentricity of the ellipse is
A
$\frac{{2\sqrt 2 - 1}}{2}$
B
$\sqrt 2 - 1$
C
$\frac{1}{2}$
D
$\frac{{\sqrt 2 - 1}}{2}$
(JEE MAIN-2015)
Solution
Focus of an ellipse is given as $\left( { \pm ae,0} \right)$
distance between then $=2ae$
According to the quation, $2ae = \frac{{{b^2}}}{a}$
$ \Rightarrow 2{a^2}e = {b^2} = {a^2}\left( {1 – {e^2}} \right)$
$ \Rightarrow 2e = 1 – {e^2} \Rightarrow {\left( {e – 1} \right)^2} = 2 \Rightarrow e = \sqrt 2 – 1$
Standard 11
Mathematics