The eccentricity of the ellipse $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ is

  • A

    $4\over5$

  • B

    $3\over5$

  • C

    $5\over4$

  • D

    Imaginary

Similar Questions

Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -

In an ellipse, its foci and ends of its major axis are equally spaced. If the length of its semi-minor axis is $2 \sqrt{2}$, then the length of its semi-major axis is

  • [KVPY 2014]

If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity $e$ of the ellipse satisfies

  • [JEE MAIN 2020]

An ellipse is drawn with major and minor axes of lengths $10 $ and $8$ respectively. Using one focus as centre, a circle is drawn that is tangent to the ellipse, with no part of the circle being outside the ellipse. The radius of the circle is

The distance between the focii of the ellipse $(3x - 9)^2 + 9y^2 =(\sqrt 2 x + y +1)^2$ is-