A rectangular region $A B C D$ contains a uniform magnetic field $B_0$ directed perpendicular to the plane of the rectangle. A narrow stream of charged particles moving perpendicularly to the side $AB$ enters this region and is ejected through the adjacent side $B C$ suffering a deflection through $30^{\circ}$. In order to increase this deflection to $60^{\circ}$, the magnetic field has to be
$\frac{3}{2} B_0$
$2 B _0$
$(2+\sqrt{3}) B _0$
$(3+\sqrt{3}) B_0$
Consider the following statements regarding a charged particle in a magnetic field . Which of the statements are true :
A charged particle of mass $m$ and charge $q$ travels on a circular path of radius $r$ that is perpendicular to a magnetic field $B$. The time taken by the particle to complete one revolution is
An electron moves through a uniform magnetic field $\vec{B}=B_0 \hat{i}+2 B_0 \hat{j} T$. At a particular instant of time, the velocity of electron is $\overrightarrow{\mathrm{u}}=3 \hat{i}+5 \hat{j} \mathrm{~m} / \mathrm{s}$. If the magnetic force acting on electron is $\vec{F}=5 e\hat kN$, where $e$ is the charge of electron, then the value of $\mathrm{B}_0$ is ____$\mathrm{T}$.
Explain electric field and its source as well as magnetic field and its source.
A singly ionized magnesium atom $(A=24)$ ion is accelerated to kinetic energy $5\,keV$ and is projected perpendicularly into a magnetic field $B$ of the magnitude $0.5\,T$. The radius of path formed will be___________ $cm$