ગણ $A\, = \,\{ x\,:\,\left| x \right|\, < \,3,\,x\, \in Z\} $ કે જ્યાં $Z$ એ પૃણાંક સંખ્યા નો ગણ છે ,તેના પરનો સંબંધ $R= \{(x, y) : y = \left| x \right|, x \ne - 1\}$ આપેલ હોય તો $R$ ના ઘાતગણમાં રહેલ સભ્ય સંખ્યા મેળવો.
$32$
$16$
$8$
$64$
કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ અને $y$ એક જ વિસ્તારમાં રહે છે. $\}$ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
જો $R = \{ (x,\,y)|x,\,y \in Z,\,{x^2} + {y^2} \le 4\} $ એ $Z$ પરનો સંબંધ હોય તો $R$ નો પ્રદેશ મેળવો
જો સંબંધ $R$ એ ગણ $A$ પરનો સંબંધ છે કે જેથી $R = {R^{ - 1}}$, તો $R$ એ . . . .
જો $A$ એ પરિવારના બાળકોનો અરિકત ગણ છે.જો $A$ પરનો સંબંધએ ‘$x$ એ $y$ નો ભાઇ છે ‘તો સંબંધ . . . .
જો સંબંધ $R$: $\left\{ {\left( {x,y} \right);3x + 3y = 10} \right\} $ એ ગણ $N$ પર વ્યાખિયાયિત છે
વિધાન $-1$ : $R$ એ સમિત છે
વિધાન $-2$ : $R$ એ સ્વવાચક છે
વિધાન $-3$ : $R$ એ પરંપરિત છે.
હોય તો આપેલ વિધાન માટે સાચી શ્રેણી ........... થાય.
(જ્યા $T$ અને $F$ નો અર્થ અનુક્ર્મે સાચુ અને ખોટુ છે.)