7.Gravitation
medium

A satellite of mass $m$ is in circular orbit of radius $3 R_E$ about earth (mass of earth $M_{E}$, radius of earth $R_{E}$). How much additional energy is required to transfer the satellite to an orbit of radius $9 R_{E}$?

A

$\frac{{G{M_E}m}}{{18{R_E}}}$

B

$\;\frac{{3G{M_E}m}}{{2{R_E}}}$

C

$\;\frac{{G{M_E}m}}{{9{R_E}}}$

D

$\;\frac{{G{M_E}m}}{{3{R_E}}}$

(NEET-2017)

Solution

Initial total energy of the satellite is

$E_{i}-\frac{G M_{E} m}{6 R_{E}}$

Final total energy of the satellite is

$E_{f}=-\frac{G M_{E} m}{18 R_{E}}$

The change in the total energy is

$\Delta E=E_{f}-E_{i}$

$\Delta E=-\frac{G M_{E} m}{18 R_{E}}-\left(-\frac{G M_{E} m}{6 R_{E}}\right)$

$=-\frac{G M_{E} m}{18 R_{E}}+\frac{G M_{E} m}{6 R_{E}}=\frac{G M_{E} m}{9 R_{E}}$

Thus, the energy required to transfer the satellite to the desired orbit $=\frac{G M_{E} m}{9 R_{E}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.