Gujarati
9-1.Fluid Mechanics
easy

जल की बूँद, वायु में अत्यधिक ऊँचाई $h$  से गिरती है। उसका अंतिम वेग होगा

A

$ \propto \,\sqrt h $

B

$ \propto \,h$

C

$ \propto \,(1/h)$

D

$h$  पर निर्भर नहीं होगी

Solution

(d) The terminal velocity is independent of the height of launch.

Standard 11
Physics

Similar Questions

सांकेतिक चित्र में दर्शाए अनुसार, दो पात्रों में पोटेशियम परमेंगनेट $\left( KMnO _4\right)$ के जल विलयन (तापमान $T$ पर) निहित है, जिनमें प्रति इकाई आयतन अणुओं की भिन्न-भिन्न सांद्रता $n _1$ व $n _2\left( n _1> n _2\right)$ है जबकि $\Delta n =\left( n _1- n _2\right) \ll n _1$ है। जब इन्हें कम लम्बाई $\ell$ व अनुप्रस्थ काट क्षेत्रफल $S$ की नलिका द्वारा संयोजित किया जाता है, $KMnO _4$ नलिका से होते हुए बाँये से दाँये पात्र में विसरित होना प्रारम्भ करता है। माना अणुओं का संग्रह तनु आदर्श गैसों की भाँति व्यवहार करता है तथा दोनों पात्रों में इनके आंशिक दाब में अंतर के कारण विसरण होता है। अणुओं की चाल $v$ को प्रत्येक अणु पर श्यान बल $-\beta v$ द्वारा सीमित किया जाता है, जहाँ $\beta$ एक नियतांक है। $(\Delta n )^2$ कोटी के सभी पदों को नगण्य मानते हुए, निम्नलिखित में से कौनसा/कौनसे सही है/हैं? ( $k _{ B }$ बोल्ट्जमान नियतांक है)

$(A)$ नलिका के पार गति करने वाले अणुओं के कारण बल $\Delta nk _{ B } TS$ है।

$(B)$ बल संतुलन का अभिप्राय है $n _1 \beta v \ell=\Delta nk _{ B } T$

$(C)$ प्रति सेकण्ड नलिका के पार जाने वाले अणुओं की कुल संख्या $\left(\frac{\Delta n}{\ell}\right)\left(\frac{k_B T}{\beta}\right) S$ है

$(D)$ नलिका से स्थानान्तरित होने वाले अणुओं की दर समय के साथ परिवर्तित नहीं होती है।

normal
(IIT-2020)

टेबल टेनिस की एक गेंद की त्रिज्या $(3 / 2) \times 10^{-2} m$ तथा द्रव्यमान $(22 / 7) \times 10^{-3} kg$ है। इसे एक तरण ताल (swimming pool) में धीरे-धीरे पानी की सतह से गहराई $d=0.7 m$ तक ले जाकर स्थिर अवस्था से छोड़ते हैं। यह गेंद, बिना पानी से भीगे हुए, पानी की सतह से चाल $v$ से बाहर आती है और ऊंचाई $H$ तक जाती है। निम्न में से कौन सा/से विकल्प सही है(हैं)?

[दिया है: $\pi=22 / 7, g=10 ms ^{-2}$, पानी का घनत्व $=1 \times 10^3 kg m ^{-3}$,

पानी की श्यानता (viscosity) $=1 \times 10^{-3} Pa – s$ ]

$(A)$ गेंद को गहराई $d$ तक ले जाने में किया गया कार्य $0.077 \ J$ है।

$(B)$ यदि पानी में लगे श्यान बल को नगण्य मानें तो चाल $v=7 m / s$ है।

$(C)$ यदि पानी में लगे श्यान बल को नगण्य मानें तो ऊँचाई $H=1.4 \ m$ है।

$(D)$ पानी में, श्यान बल को छोड़कर, लगे कुल बल के परिमाण का अधिकतम श्यान बल के सापेक्ष अनुपात 500/9 है।

normal
(IIT-2024)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.