किसी श्यान द्रव में काफी ऊँचाई से एक गोलाकार ठोस गेंद गिर रही है। उसके वेग में समय के साथ परिवर्तन का सही प्रदर्शन करने वाला वक्र है
वक्र $ A$
वक्र $B$
वक्र $ C$
वक्र $D$
(b)
त्रिज्या $1 \mathrm{~mm}$ तथा घनत्व $10.5 \mathrm{~g} / \mathrm{cc}$ वाली एक गोलीय गेंद को $9.8$ पॉइस श्यानता गुणांक तथा घनत्व $1.5 \mathrm{~g} / \mathrm{cc}$ वाली ग्लोसरीन में गिराया जाता है व गेंद के नियत वेग प्राप्त करने पर गेंद पर लगने वाला श्यान बल $3696 \times 10^{-\mathrm{x}} \mathrm{N}$ हो तो $\mathrm{x}$ का मान ज्ञात कीजिये। (दिया है, $g=9.8 \mathrm{~m} / \mathrm{s}^2$ तथा $\pi=\frac{22}{7}$ )
$1750 \mathrm{~kg} / \mathrm{m}^3$ घनत्व के एक घोल में $6 \mathrm{~mm}$ व्यास का एक वायु का बुलबुला $0.35 \mathrm{~cm} / \mathrm{s}$. की दर से उठता है। घोल का श्यानता गुणांक_________Pas है (वायु का घनत्व नगण्य मानकर एवं दिया है, $\left.\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
त्रिज्या $0.1\,mm$ तथा $10^4\,kg m ^{-3}$ घनत्व वाली एक छोटी गोलीय गेंद पानी की टंकी में प्रवेश करने से पूर्व गुरूत्व के अधीन $h$ दूरी से मुक्त रूप से गिरती है। यदि पानी में गिरने के बाद इसका वेग नहीं बदलता है तथा यह समान नियत वेग से पानी अन्दर गति करती है, तो $h$ का मान $m$ में ज्ञात कीजिये ।(दिया है $g =10\,ms ^{-2}$,पानी की श्यानता $=1.0 \times 10^{-5}\,N – sm ^{-2}$ )
त्रिज्या $R$ के एक ठोस गोले का, श्यानता गुणांक $\eta$ के एक द्रव में (गुरूत्वीय बल के कारण) सीमान्त वेग $v_{1}$ है। यदि इस ठोस गोले को बराबर त्रिज्या के $27$ गोलों में बाँटा जाये तो प्रत्येक गोले का सीमान्त वेग इसी द्रव में $v_{2}$ पाया जाता है, तो $\left(v_{1} / v_{2}\right)$ का मान होगा ?
वर्षा की बूंदों का औसत द्रव्यमान $3.0 \times 10^{-5}\; kg$ है और उनका औसत सीमान्त वेग $9\; m / s$ है। जिस स्थान पर एक वर्ष में $100 \;cm$ वर्षा होती है उस स्थान के प्रति वर्ग मीटर पृष्ठ पर वर्षा द्वारा स्थानान्तरित ऊर्जा की गणना कीजिए।
Confusing about what to choose? Our team will schedule a demo shortly.