त्रिज्या $0.1\,mm$ तथा $10^4\,kg m ^{-3}$ घनत्व वाली एक छोटी गोलीय गेंद पानी की टंकी में प्रवेश करने से पूर्व गुरूत्व के अधीन $h$ दूरी से मुक्त रूप से गिरती है। यदि पानी में गिरने के बाद इसका वेग नहीं बदलता है तथा यह समान नियत वेग से पानी अन्दर गति करती है, तो $h$ का मान $m$ में ज्ञात कीजिये ।(दिया है $g =10\,ms ^{-2}$,पानी की श्यानता $=1.0 \times 10^{-5}\,N - sm ^{-2}$ )
$10$
$9$
$30$
$20$
किसी बेलनाकार नलिका से एक श्यान द्रव बह रहा है। द्रव के वेग वितरण को उचित रूप से निम्न चित्र द्वारा दर्शाया जा सकता है
एक एकसमान घनत्व के तरल के गोलाकार पिंड की त्रिज्या $R$ है तथा यह अपने स्वयं के गुरूतव के प्रभाव में साम्यावस्था में है। यदि इसके केन्द्र से दूरी $r(r < R)$ पर दाव $P(r)$ है, तव सही विकल्प है (हैं)
$(A)$ $P ( I =0)=0$ $(B)$ $\frac{ P ( r =3 R / 4)}{ P ( r =2 R / 3)}=\frac{63}{80}$
$(C)$ $\frac{ P ( r =3 R / 5)}{ P ( r =2 R / 5)}=\frac{16}{21}$ $(D)$ $\frac{ P ( r = R / 2)}{ P ( r = R / 3)}=\frac{20}{27}$
त्रिज्या $1 \mathrm{~mm}$ तथा घनत्व $10.5 \mathrm{~g} / \mathrm{cc}$ वाली एक गोलीय गेंद को $9.8$ पॉइस श्यानता गुणांक तथा घनत्व $1.5 \mathrm{~g} / \mathrm{cc}$ वाली ग्लोसरीन में गिराया जाता है व गेंद के नियत वेग प्राप्त करने पर गेंद पर लगने वाला श्यान बल $3696 \times 10^{-\mathrm{x}} \mathrm{N}$ हो तो $\mathrm{x}$ का मान ज्ञात कीजिये। (दिया है, $g=9.8 \mathrm{~m} / \mathrm{s}^2$ तथा $\pi=\frac{22}{7}$ )
$'r'$ त्रिज्या की गोलाकार गेंद, ''' श्यानता वाले द्रव में $ 'v'$ वेग से गिर रही है। गेंद पर कार्यरत मंदक श्यान बल
किसी श्यान द्रव में काफी ऊँचाई से एक गोलाकार ठोस गेंद गिर रही है। उसके वेग में समय के साथ परिवर्तन का सही प्रदर्शन करने वाला वक्र है