त्रिज्या $R$ के एक ठोस गोले का, श्यानता गुणांक $\eta$ के एक द्रव में (गुरूत्वीय बल के कारण) सीमान्त वेग $v_{1}$ है। यदि इस ठोस गोले को बराबर त्रिज्या के $27$ गोलों में बाँटा जाये तो प्रत्येक गोले का सीमान्त वेग इसी द्रव में $v_{2}$ पाया जाता है, तो $\left(v_{1} / v_{2}\right)$ का मान होगा ?
$27$
$1/27$
$9$
$1/9$
त्रिज्या $0.1\,mm$ तथा $10^4\,kg m ^{-3}$ घनत्व वाली एक छोटी गोलीय गेंद पानी की टंकी में प्रवेश करने से पूर्व गुरूत्व के अधीन $h$ दूरी से मुक्त रूप से गिरती है। यदि पानी में गिरने के बाद इसका वेग नहीं बदलता है तथा यह समान नियत वेग से पानी अन्दर गति करती है, तो $h$ का मान $m$ में ज्ञात कीजिये ।(दिया है $g =10\,ms ^{-2}$,पानी की श्यानता $=1.0 \times 10^{-5}\,N - sm ^{-2}$ )
गोलाकार बारिश की बूँद का सीमान्त वेग $\left( v _{ t }\right)$, गोलाकार बारिश की बूँद की त्रिज्या (r) पर इस प्रकार निर्भर करता है।
स्टोक्स नियम प्रमाणित करने के लिए एक परीक्षण में एक छोटी गोली जिसकी त्रिज्या $r$ एवं घनत्व $\rho$ है, एक पानी से भरी टंकी की सतह से $h$ ऊँचाई से गुरूत्वीय क्षेत्र के अन्तर्गत गिरायी जाती है। यदि गोली का पानी में घुसने से तुरंत पहले पानी के अंदर सीमान्त वेग पानी में वेग के बराबर हो तो $h , r$ पर इस प्रकार समानुपाती है : (वायु की श्यानता गुणांक लें)
किसी श्यान द्रव में काफी ऊँचाई से एक गोलाकार ठोस गेंद गिर रही है। उसके वेग में समय के साथ परिवर्तन का सही प्रदर्शन करने वाला वक्र है
'$r$' त्रिज्या की छोटी गोलाकार गेंद नगण्य घनत्व के एक श्यान माध्यम में गिरती है। उसका सीमान्त वेग ' $v$ ' है। समान द्रव्यमान तथा $2 r$ त्रिज्या की दूसरी गोली समान श्यान माध्यम में गिरती है तो उसका सीमान्त वेग होगा: