1. Electric Charges and Fields
medium

$10 \,cm$ ત્રિજ્યાના એકરૂપ વિદ્યુતભારીત અવાહક ગોળાના કેન્દ્રથી $20 \,cm$ અંતરે વિદ્યુતક્ષેત્ર $E$ છે. તો $5 \,cm$ અંતરે કેટલું હશે ?

A

$16 E$

B

$4 E$

C

$2 E$

D

Zero

Solution

(c)

$R=10 \,cm , \quad r=20 \,cm$

$E=\frac{k Q}{(0.2)^2}$

Now at $r=5 \,cm$

$E^{\prime}=\frac{k Q(0.05)}{(0.1)^3}$

Now, $\frac{E^{\prime}}{E}=\frac{(0.05)}{(0.1)^3}(0.2)^2=2$

$E=2 E$

Standard 12
Physics

Similar Questions

દરેક પ્લેટની સપાટીનું ક્ષેત્રફળ $\mathrm{S}$ હોય તેવી બે સમાન વાહક પ્લેટો $\alpha $ અને $\beta $ જડિત કરેલી છે અને તેમના પર અનુક્રમે  $-\mathrm{q}$  અને  $\mathrm{q}$ વિધુતભાર છે. જ્યાં $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ એક ત્રીજી પ્લેટ $\gamma $ ને આ બે પ્લેટોની વચ્ચે મૂકવામાં આવે છે તે મુક્ત રીતે ગતિ કરી શકે છે તથા તેના પર $\mathrm{q}$ વિધુતભાર છે જે આકૃતિમાં દર્શાવ્યું છે. ત્રીજી પ્લેટને મુક્ત કરતાં તે $\beta $  પ્લેટ સાથે અથડાય છે. એવું ધારવામાં આવે છે કે અથડામણ સ્થિતિસ્થાપક છે અને $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભારને વહેંચાવા માટે અથડામણો વચ્ચેનો પૂરતો સમય છે.

$(a)$ અથડામણ પહેલા $\gamma $ પ્લેટ પર લાગતું વિધુતક્ષેત્ર શોધો. 

$(b)$ અથડામણ બાદ $\beta $ અને $\gamma $ પ્લેટો પરના વિધુતભાર શોધો. 

$(c)$ અથડામણ પછી $\gamma $ પ્લેટનો $\mathrm{B}$ પ્લેટથી $\mathrm{d}$ અંતરે હોય ત્યારનો વેગ શોધો.

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.