A solid cylinder of mass $20 \;kg$ rotates about its axis with angular speed $100\; rad s ^{-1}$ The radius of the cylinder is $0.25 \;m$. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of angular momentum of the cylinder about its axis?
Mass of the cylinder, $m=20 kg$
Angular speed, $\omega=100$ rad $s^{-1}$
Radius of the cylinder, $r=0.25 m$
The moment of inertia of the solid cylinder:
$I=\frac{m r^{2}}{2}$
$=\frac{1}{2} \times 20 \times(0.25)^{2}$
$=0.625 kg m ^{2}$
$\therefore$ Kinetic energy $=\frac{1}{2} I \omega^{2}$
$=\frac{1}{2} \times 6.25 \times(100)^{2}=3125 J$
$\therefore$ Angular momentum, $L=I \omega$
$=6.25 \times 100$
$=62.5 Js$
A ring of mass $M$ and radius $R$ is rotating about its axis with angular velocity $\omega $. Two identical bodies each of mass $m$ are now gently attached at the two ends of a diameter of the ring. Because of this, the kinetic energy loss will be
A solid sphere rolls without slipping, first horizontally and then up to a point $X$ at height $h$ on an inclined plane before rolling down, as shown in the figure below. The initial horizontal speed of the sphere is
A $70\, kg$ man leaps vertically into the air from a crouching position. To take the leap the man pushes the ground with a constant force $F$ to raise himself The center of gravity rises by $0.5\, m$ before he leaps. After the leap the $c.g.$ rises by another $1\, m$. The maximum power delivered by the muscles is : (Take $g\, = 10\, ms^{-2}$)
This question has Statement $1$ and Statement $2$. Of the four choices given after the Statements, choose the one that best describes the two Statements.
Statement $1$ : When moment of inertia $I$ of a body rotating about an axis with angular speed $\omega $ increases, its angular momentum $L$ is unchanged but the kinetic energy $K$ increases if there is no torque applied on it.
Statement $2$ : $L = I\omega $, kinetic energy of rotation $ = \frac{1}{2}\,I\omega ^2$
A solid cylinder of mass $3\, kg$ is rolling on a horizontal surface with velocity $4\, m s^{- 1}$. It collides with a horizontal spring of force constant $200 \,N m^{-1}$. The maximum compression produced in the spring will be ............... $\mathrm{m}$