A spherical body of mass $m$ and radius $r$ is allowed to fall in a medium of viscosity $\eta $. The time in which the velocity of the body increases from zero to $0.63$ times the terminal velocity $(v)$ is called time constant $(\tau )$. Dimensionally $\tau $ can be represented by
$\frac{{m{r^2}}}{{6\pi \eta }}$
$\sqrt {\left( {\frac{{6\pi mr\eta }}{{{g^2}}}} \right)} $
$\frac{m}{{6\pi \eta rv}}$
None of the above
List $-I$ | List $-II$ | ||
$A$. | Coefficient of Viscosity | $I$. | $[M L^2T^{–2}]$ |
$B$. | Surface Tension | $II$. | $[M L^2T^{–1}]$ |
$C$. | Angular momentum | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | Rotational Kinetic energy | $IV$. | $[M L^0T^{–2}]$ |
In a system of units if force $(F)$, acceleration $(A) $ and time $(T)$ are taken as fundamental units then the dimensional formula of energy is
Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity $X$ as follows: [position $]=\left[X^\alpha\right] ;[$ speed $]=\left[X^\beta\right]$; [acceleration $]=\left[X^{ p }\right]$; [linear momentum $]=\left[X^{ q }\right]$; [force $]=\left[X^{ I }\right]$. Then -
$(A)$ $\alpha+p=2 \beta$
$(B)$ $p+q-r=\beta$
$(C)$ $p-q+r=\alpha$
$(D)$ $p+q+r=\beta$
$\left(P+\frac{a}{V^2}\right)(V-b)=R T$ represents the equation of state of some gases. Where $P$ is the pressure, $V$ is the volume, $T$ is the temperature and $a, b, R$ are the constants. The physical quantity, which has dimensional formula as that of $\frac{b^2}{a}$, will be