દળ $m$ અને ત્રિજ્યા $r$ વાળો એક દડો $\eta $ શ્યાનતાવાળા માધ્યમ માં પતન કરે છે. પદાર્થ નો વેગ શૂન્ય માથી ટર્મિનલ વેગ $(v)$ નો $0.63$ ગણો થાય એ દરમ્યાન લગતા સમય ને સમય નિયતાંક $(\tau )$ કહેવાય. $\tau $ નું પરિમાણ શું થશે?
$\frac{{m{r^2}}}{{6\pi \eta }}$
$\sqrt {\left( {\frac{{6\pi mr\eta }}{{{g^2}}}} \right)} $
$\frac{m}{{6\pi \eta rv}}$
એક પણ નહીં
અમુક વિસ્તારમાં વિદ્યુત ક્ષેત્ર $\overrightarrow{ E }=\left(\frac{ A }{x^2} \hat{i}+\frac{ B }{y^3} \hat{j}\right)$ મુજબ આપી શકાય છે. $A$ અને $B$ ના $SI$ એકમ $..........$ થશે.
$y\, = \,{x^2}r\, + \,{M^1}{L^1}{T^{ - 2}}$ પારિમાણિક દૃષ્ટિએ સાચું હોય, તો $x^2$ નું પારિમાણિક સૂત્ર મેળવો. ( $r$ એ સ્થાનાંતર દશવિ છે.)
$\frac{\mathrm{B}^{2}}{2 \mu_{0}}$ નું પારિમાણ શું થાય?
જ્યાં $\mathrm{B}$ એ ચુંબકીયક્ષેત્ર અને $\mu_{0}$ એ શૂન્યાવકાશની ચુંબકીય પરમીએબીલીટી છે.
સરળ આવર્તગતિ કરતા પદાર્થનો આવર્તકાળ $ T = {P^a}{D^b}{S^c} $ .જયાં $P$ દબાણ,$D$ ઘનતા અને $S$ પૃષ્ઠતાણ હોય,તો $a,b$ અને $c$ ના મૂલ્યો કેટલા હોવા જોઈએ?
જો બળ $({F})$, લંબાઈ $({L})$ અને સમય $({T})$ ને મૂળભૂત રાશિ લેવામાં આવે છે. તો ધનતાનું પરિમાણ શું થાય?