$12\, cm$ त्रिज्या वाले एक गोलीय चालक के पृष्ठ पर $1.6 \times 10^{-7} \,C$ का आवेश एकसमान रूप से वितरित है।

$(a)$ गोले के अंदर

$(b)$ गोले के ठीक बाहर

$(c)$ गोले के केंद्र से $18 cm$ पर अवस्थित, किसी बिंदु पर विध्यूत क्षेत्र क्या होगा?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ Radius of the spherical conductor, $r=12 \,cm =0.12\, m$

Charge is uniformly distributed over the conductor, $q=1.6 \times 10^{-7}\, C$

Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it.

$(b)$ Electric field $E$ just outside the conductor is given by the relation. $E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}$

Where, $\varepsilon_{0}=$ Permittivity of free space and $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9}\, Nm ^{2} \,C ^{-2}$

Therefore, $E =\frac{9 \times 10^{9} \times 1.6 \times 10^{-7}}{(0.12)^{2}}=10^{5} \,N\, C^{-1}$

Therefore, the electric field just outside the sphere is $10^{5} \,N\, C^{-1}$

$(c)$ Electric field at a point $18\, m$ from the centre of the sphere $= E _{1}$ Distance of the point from the centre, $d =18 \,cm =0.18\, m$

$E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{d^{2}}=\frac{9 \times 10^{9} \times 1.6 \times 10^{-7}}{\left(1.8 \times 10^{-2}\right)^{2}}$$=4.4 \times 10^{4} \,N\,C ^{-1}$

Therefore, the electric field at a point $18\, cm$ from the centre of the sphere is $4.4 \times 10^{4} \,N\, C^{-1}$

Similar Questions

यहाँ आरेख में, किसी गोलाकार कोश (शैल) के कोटर के भीतर दो बिन्दु-आवेश $+ Q$ तथा $- Q$ दर्शाये गये हैं। ये आवेश कोटर की सतह के निकट इस प्रकार रखे गये हैं कि, एक आवेश कोश के केन्द्र की एक ओर है और दूसरा केन्द्र के विपरीत दूसरी ओर। यदि, भीतरी तथा बाहरी सतहों (पृष्ठों) पर, पृष्ठ आवेश क्रमशः $\sigma_{1}$ तथा $\sigma_{2}$ और नेट आवेश क्रमशः $Q_{1}$ तथा $Q _{2}$ हो तो :

  • [JEE MAIN 2015]

किसी खोखले आवेशित चालक में उसके पृष्ठ पर कोई छिद्र बनाया गया है। यह दर्शाइए कि छिद्र में विध्यूत क्षेत्र $\left(\sigma / 2 \varepsilon_{0}\right) \hat{ n }$ है, जहाँ $\hat{ n }$ अभिलंबवत दिशा में बहिर्मुखी एकांक सदिश है तथा $\sigma$ छिद्र के निकट पृष्ठीय आवेश घनत्व है

अपरिमित लम्बाई और $R$ त्रिज्या के एक ठोस बेलन पर एक समान आयतन-आवेश-घनत्व $\rho$ है। इसमें $R / 2$ त्रिज्या एक खोखला गोलीय-कोष बेलन के अक्ष पर केन्द्रित है (चित्र देखिये)$।।$ अक्ष से $2 \ R$ दूरी पर स्थित बिन्दु $P$ पर विधुत $\frac{23 p }{16 k \varepsilon_0}$ से दिया जाता है। तब $k$ का मान क्या है ?

  • [IIT 2012]

एक त्रिज्या $R_1$ तथा एक समान आवेश घनत्व का गोलाकर आवेश मूल बिन्दु $O$ पर केन्द्रित है। इसमें एक $R_2$ त्रिज्या तथा $P$ पर केन्द्रित एक गोलाकार गुहिका (cavity), जहाँ $O P=a=R_1-R_2$ है, वनाई जाती है। (चित्र देखें)। यदि गुहिका के अन्दर स्थिति $\vec{r}$ पर विधुत क्षेत्र $\overline{ E }(\overrightarrow{ r })$ है, तव सही कथन है (हैं)

  • [IIT 2015]

एक पतले अनन्त आवेशित तल एवं एक अनन्त रेखीय आवेश के आवेश घनत्व क्रमशः $+\sigma$ एवं $+\lambda$ हैं, जो कि एक-दूसरे से $5 \mathrm{~m}$ की दूरी पर एक-दूसरे के समानान्तर रखे हैं। रेखीय आवेश से आवेशित तल की तरफ क्रमशः $\frac{3}{\pi} \mathrm{m}$ एवं $\frac{4}{\pi} \mathrm{m}$ की लम्बवत दूरियों पर बिन्दू ' $P$ ' एवं ' $Q$ ' हैं। ' $E_P$ ' एवं ' $E_Q$ ' क्रमशः बिन्दु ' $P$ ' एवं ' $Q$ ' पर परिणामी विद्युत क्षेत्र की तीव्रताओं के परिमाण हैं। यदि $2|\sigma|=|\lambda|$ के लिए $\frac{E_p}{E_Q}=\frac{4}{a}$ है तो $a$ का मान_________है।

  • [JEE MAIN 2023]