Gujarati
Hindi
9-1.Fluid Mechanics
normal

A spherical solid ball of volume $V$ is made of a material of density ${\rho _1}$ . It is falling through a liquid of density ${\rho _2}\left( {{\rho _2} < {\rho _1}} \right)$. Assume that the liquid  applies a viscous force on the ball that is propoertional to the square of its speed $v$ , i.e., ${F_{{\rm{viscous}}}} =  - k{v^2}\left( {k > 0} \right)$. Then terminal speed of the bal is

 

A

$\sqrt {\frac{{Vg\left( {{\rho _1} - {\rho _2}} \right)}}{k}} $

B

$\frac{{Vg{\rho _1}}}{k}$

C

$\sqrt {\frac{{Vg{\rho _1}}}{k}} $

D

$\frac{{Vg\left( {{\rho _1} - {\rho _2}} \right)}}{k}$

Solution

The condition for terminal speed $\left(v_{t}\right)$ is

Weight $=$ Buoyant force $+$ Viscous force

$\therefore V \rho_{1} g=V \rho_{2} g+k v_{t}^{2} \therefore v_{t}=\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.