- Home
- Standard 11
- Physics
A spherical solid ball of volume $V$ is made of a material of density ${\rho _1}$ . It is falling through a liquid of density ${\rho _2}\left( {{\rho _2} < {\rho _1}} \right)$. Assume that the liquid applies a viscous force on the ball that is propoertional to the square of its speed $v$ , i.e., ${F_{{\rm{viscous}}}} = - k{v^2}\left( {k > 0} \right)$. Then terminal speed of the bal is
$\sqrt {\frac{{Vg\left( {{\rho _1} - {\rho _2}} \right)}}{k}} $
$\frac{{Vg{\rho _1}}}{k}$
$\sqrt {\frac{{Vg{\rho _1}}}{k}} $
$\frac{{Vg\left( {{\rho _1} - {\rho _2}} \right)}}{k}$
Solution
The condition for terminal speed $\left(v_{t}\right)$ is
Weight $=$ Buoyant force $+$ Viscous force
$\therefore V \rho_{1} g=V \rho_{2} g+k v_{t}^{2} \therefore v_{t}=\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}}$