A spring balance has a scale that reads from $0$ to $50\; kg$. The length of the scale is $20\; cm .$ A body suspended from this balance, when displaced and released, oscillates with a period of $0.6\; s$. What is the weight of the body in $N$?
Maximum mass that the scale can read, $M=50 \,kg$
Maximum displacement of the spring $=$ Length of the scale, $l=20 \,cm =0.2\, m$
Time period, $T=0.6 \,s$
Maximum force exerted on the spring, $F=M g$
Where, $g=$ acceleration due to gravity $=9.8 \,m / s ^{2}$
$F=50 \times 9.8=490$
Spring constant, $k=\frac{F}{l}=\frac{490}{0.2}=2450 \,Nm ^{-1}$
Mass $m,$ is suspended from the balance.
Time period, $T=2 \pi \sqrt{\frac{m}{k}}$
$\therefore m=\left(\frac{T}{2 \pi}\right)^{2} \times k=\left(\frac{0.6}{2 \times 3.14}\right)^{2} \times 2450=22.36 \,kg$
Weight of the body $=m g=22.36 \times 9.8=219.167\, N$
Hence, the weight of the body is about $219\; N$
Two bodies of masses $1\, kg$ and $4\, kg$ are connected to a vertical spring, as shown in the figure. The smaller mass executes simple harmonic motion of angular frequency $25\, rad/s$, and amplitude $1.6\, cm$ while the bigger mass remains stationary on the ground. The maximum force exerted by the system on the floor is ..... $N$ ( take $g = 10\, ms^{-2}$)
A spring having with a spring constant $1200\; N m ^{-1}$ is mounted on a hortzontal table as shown in Figure A mass of $3 \;kg$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \;cm$ and released. Determine
$(i)$ the frequency of oscillations,
$(ii)$ maximum acceleration of the mass, and
$(iii)$ the maximum speed of the mass.
Spring of spring constant $1200\, Nm^{-1}$ is mounted on a smooth frictionless surface and attached to a block of mass $3\, kg$. Block is pulled $2\, cm$ to the right and released. The angular frequency of oscillation is .... $ rad/sec$
A particle of mass $m$ is attached to one end of a mass-less spring of force constant $k$, lying on a frictionless horizontal plane. The other end of the spring is fixed. The particle starts moving horizontally from its equilibrium position at time $t=0$ with an initial velocity $u_0$. When the speed of the particle is $0.5 u_0$, it collies elastically with a rigid wall. After this collision :
$(A)$ the speed of the particle when it returns to its equilibrium position is $u_0$.
$(B)$ the time at which the particle passes through the equilibrium position for the first time is $t=\pi \sqrt{\frac{ m }{ k }}$.
$(C)$ the time at which the maximum compression of the spring occurs is $t =\frac{4 \pi}{3} \sqrt{\frac{ m }{ k }}$.
$(D)$ the time at which the particle passes througout the equilibrium position for the second time is $t=\frac{5 \pi}{3} \sqrt{\frac{ m }{ k }}$.
What is the period of small oscillations of the block of mass $m$ if the springs are ideal and pulleys are massless ?