A spring having with a spring constant $1200\; N m ^{-1}$ is mounted on a hortzontal table as shown in Figure A mass of $3 \;kg$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \;cm$ and released
let us take the position of mass when the spring is unstreched as $x=0,$ and the direction from left to right as the positive direction of $x$ -axis. Give $x$ as a function of time $t$ for the oscillating mass if at the moment we start the stopwatch $(t=0),$ the mass is
$(a)$ at the mean position,
$(b)$ at the maximum stretched position, and
$(c)$ at the maximum compressed position. In what way do these functions for $SHM$ differ from each other, in frequency, in amplitude or the inittal phase?
The functions have the same frequency and amplitude, but different initial phases
Distance travelled by the mass sideways, $A=2.0 \,cm$
Force constant of the spring, $k=1200\, N m ^{-1}$
Mass, $m=3 \,kg$
Angular frequency of oscillation:
$\omega=\sqrt{\frac{k}{m}}$
$=\sqrt{\frac{1200}{3}}=\sqrt{400}=20 \,rad s ^{-1}$
When the mass is at the mean position, initial phase is $0 .$
Displacement, $x=A \sin \omega t$
$=2 \sin 20 t$
At the maximum stretched position, the mass is toward the extreme right. Hence, the
initial phase is $\frac{\pi}{2}$
Displacement, $x=A \sin \left(\omega t+\frac{\pi}{2}\right)$
$=2 \sin \left(20 t+\frac{\pi}{2}\right)$
$=2 \cos 20 t$
At the maximum compressed position, the mass is toward the extreme left. Hence, the initial phase is $\frac{3 \pi}{2}$
$x=A \sin \left(\omega t+\frac{3 \pi}{2}\right)$
Displacement,
$=2 \sin \left(20 t+\frac{3 \pi}{2}\right)=-2 \cos 20 t$
The functions have the same frequency $\left(\frac{20}{2 \pi} Hz \right)$ and amplitude $(2 \,cm ),$ but different initial phases $\left(0, \frac{\pi}{2}, \frac{3 \pi}{2}\right)$
A uniform spring of force constant $k$ is cut into two pieces, the lengths of which are in the ratio $1 : 2$. The ratio of the force constants of the shorter and the longer pieces is
In the following questions, match column $-I$ with column $-II$ and choose the correct options
Two particles of mass $m$ are constrained to move along two horizontal frictionless rails that make an angle $2\theta $ with respect to each other. They are connected by a spring with spring constant $k$ . The angular frequency of small oscillations for the motion where the two masses always stay parallel to each other (that is the distance between the meeting point of the rails and each particle is equal) is
The springs shown are identical. When $A = 4kg$, the elongation of spring is $1\, cm$. If $B = 6\,kg$, the elongation produced by it is ..... $ cm$
Infinite springs with force constant $k$, $2k$, $4k$ and $8k$.... respectively are connected in series. The effective force constant of the spring will be