સ્વાધ્યાયમાં, ચાલો આપણે જ્યારે સ્પ્રિંગ ખેંચાયેલી ના હોય ત્યારની દ્રવ્યમાનની સ્થિતિને $x = 0$ લઈએ અને ડાબાથી જમણી તરફની દિશાને $X-$ અક્ષની ધન દિશા તરીકે લઈએ. દોલન કરતાં આ દ્રવ્યમાન આપણે જ્યારે સ્ટૉપવૉચ શરૂ કરીએ $(t = 0)$ તે ક્ષણે આ દ્રવ્યમાન
$(a)$ મધ્યમાન સ્થાને
$(b) $ મહત્તમ ખેંચાયેલા સ્થિતિ પર, અને
$(c)$ મહત્તમ સંકોચિત સ્થિતિ પર હોય તે દરેક કિસ્સા માટે $x$ ને $t$ ના વિધેય તરીકે દર્શાવો.
સ.આ.ગ. માટેનાં આ વિધેયો આવૃત્તિમાં, કંપવિસ્તારમાં અથવા પ્રારંભિક કાળમાં બીજા કરતાં કેવી રીતે અલગ પડે છે ?
The functions have the same frequency and amplitude, but different initial phases
Distance travelled by the mass sideways, $A=2.0 \,cm$
Force constant of the spring, $k=1200\, N m ^{-1}$
Mass, $m=3 \,kg$
Angular frequency of oscillation:
$\omega=\sqrt{\frac{k}{m}}$
$=\sqrt{\frac{1200}{3}}=\sqrt{400}=20 \,rad s ^{-1}$
When the mass is at the mean position, initial phase is $0 .$
Displacement, $x=A \sin \omega t$
$=2 \sin 20 t$
At the maximum stretched position, the mass is toward the extreme right. Hence, the
initial phase is $\frac{\pi}{2}$
Displacement, $x=A \sin \left(\omega t+\frac{\pi}{2}\right)$
$=2 \sin \left(20 t+\frac{\pi}{2}\right)$
$=2 \cos 20 t$
At the maximum compressed position, the mass is toward the extreme left. Hence, the initial phase is $\frac{3 \pi}{2}$
$x=A \sin \left(\omega t+\frac{3 \pi}{2}\right)$
Displacement,
$=2 \sin \left(20 t+\frac{3 \pi}{2}\right)=-2 \cos 20 t$
The functions have the same frequency $\left(\frac{20}{2 \pi} Hz \right)$ and amplitude $(2 \,cm ),$ but different initial phases $\left(0, \frac{\pi}{2}, \frac{3 \pi}{2}\right)$
સ્પ્રિંગ $A$ અને સ્પ્રિંગ $B$નાં બળ અચળાંક $300\, N / m$ અને $400$ $N / m$ ધરાવે છે. તેમને શ્રેણીમાં જોડીને $8.75$ સેમી દબાવવામાં આવે છે. $A$ અને $B$ માં સંગ્રહિત ઊર્જાનો ગુણોતર $\frac{E_{A}}{E_{B}}$ કેટલો થાય?
$k_1$ અને $k_2$ બળ-અચળાંકવાળી બે ધિંગોને શ્રેણીમાં જોડતાં પરિણામી બળ-આચળાંક $2$ એકમ મળે છે. જ્યારે તેમને સમાંતર જોડતાં પરિણામી બળ-અચળાંક $9$ એકમ મળે છે તો $k_1$ અને $k_2$ ના મૂલ્યો મેળવો.
આકૃતિમાં બતાવ્યા પ્રમાણે $k$ સ્પ્રિંગ-અચળાંક ધરાવતી બે સમાન સ્પ્રિંગો $m$ દ્રવ્યમાન ના બ્લૉક સાથે અને સ્થિર આધાર સાથે જોડાયેલ છે. બતાવો કે જ્યારે આ દ્રવ્યમાન તેની સંતુલન સ્થિતિથી કોઈ પણ બાજુ સ્થાનાંતરિત (વિસ્થાપિત) થાય, ત્યારે તે એક સરળ આવર્તગતિ કરે છે. આ દોલનોનો આવર્તકાળ શોધો.
આકૃતિનાં દર્શાવ્યા મુજબની જ પૃથ્વીની સપાટીને સમક્ષિતિજ રહે તેમ ગોઠવવામાં આવેલ છે. આ સ્થિતિમાં સ્પ્રિંગો પર કોઈ તણાવ નથી સામાન્ય સ્થિતિમાં છે. જો ડાબી તરફનું દળ ડાબી તરફ અને જમણી તરફનું દળ જમણી તરફ સરખા અંતેર ખેંચીને છોડવામાં આવે છે. જો પરિણામી અથડામણ સ્થિતિ સ્થાપક હોય તો આ પ્રણાલીના દોલનોનો આવર્તકાળ કેટલો હશે ?
એક $k$ સ્પ્રિંગ અચળાંકવાળી સ્પ્રિંગને $A$ અને $B$ એમ બે ભાગમાં કાપવામાં આવે છે. જો લંબાઈ $l_{ A }$ અને $l_{ B }$ નો ગુણોત્તર $l_{ A }: l_{ B }=2: 3$ હોય તો, સ્પ્રિંગ $A$ નો સ્પ્રિંગ અચળાંક કેટલો થાય?