दिए गए आरेख में $M$ द्रव्यमान का एक पिण्ड एक क्षैतिज कमानी से बंधा हैं, जिसका दूसरा सिरा किसी दढ़ सपोर्ट से जुड़ा है। कमानी का कमानी स्थिरांक $k$ है। यह पिण्ड किसी घर्षणहीन पष्ठ पर आवर्तकाल $T$ और आयाम $A$ के साथ दोलन करता है। जब यह पिण्ड साम्यावस्था की स्थिति पर होता है (आरेख देखिए) तब कोई अन्य पिण्ड, जिसका द्रव्यमान $m$ है, इस पिण्ड के ऊपर धीरे से जोड़ दिया जाता है। अब दोलन का नया आयाम होगा।
$A \sqrt{\frac{M-m}{M}}$
$A \sqrt{\frac{M}{M+m}}$
$A \sqrt{\frac{M+m}{M}}$
$A \sqrt{\frac{M}{M-m}}$
एक $m$ द्रव्यमान की वस्तु श्रेणीक्रम में जुडी हुई ${k_1}$ एवं ${k_2}$ बल नियतांक की स्प्रिंगों से लटकी हुई है। वस्तु का दोलनकाल होगा
एक द्रव्यमान $M$ एक नगण्य द्रव्यमान की स्प्रिंग से लटक रहा है। स्प्रिंग को थोड़ा सा खींच कर छोड़ने पर द्रव्यमान आवर्तकाल $T$ से दोलन करने लगता है यदि द्रव्यमान में वृद्धि $m$ कर दी जाये तो आवर्तकाल $\frac{{5T}}{3}$ हो जाता है। तो $\frac{m}{M}$ का मान है
एक हल्की, उध्र्वाधर लटकी स्प्रिंग के निचले सिरे से जुड़ा हुआ कण कम्पन कर रहा है। कण का अधिकतम वेग $15$ मी/सै है तथा दोलनकाल $628$ मिली सैकण्ड है। गति का आयाम (सेमी में)
एक स्प्रिंग का स्प्रिंग नियतांक $10\,N/m$ है यह स्प्रिंग $10\,kg$ द्रव्यमान के साथ सरल आवर्त गति करती है, यदि किसी क्षण पर इसका वेग $40\,cm/sec$ है तो इस स्थिति में इसका विस्थापन ..... $m$ होगा (यहाँ आयाम $0.5\,m$ है)