- Home
- Standard 11
- Physics
बिना तानित लम्बाई $l$ की एक कमानी से एक द्रव्यमान $m$ इस प्रकार है कि इसका एक सिरा एक दृढ़ आधार पर बँधा है। यह मानते हुये कि कमानी एक एकसमान तार से बनी है, इसमें गतिज ऊर्जा होगी यदि इसका स्वतन्त्र सिरा एकसमान वेग $v$ से खींचा जाए
$\frac {1}{2}\,mv^2$
$mv^2$
$\frac {1}{3}\,mv^2$
$\frac {1}{6}\,mv^2$
Solution
We can find the effective mass of the spring by finding its kinetic energy. This requires adding all the length elements' kinetic energy, and requires the following integral:
$T=\int_{m} \frac{1}{2} u^{2} d m$
since the spring is uniform, $d m=\left(\frac{d y}{L}\right) m,$ where $L$ is the length of the spring. Hence,
$T =\int_{0}^{L} \frac{1}{2} u^{2}\left(\frac{d y}{L}\right) m$
$=\frac{1}{2} \frac{m}{L} \int_{0}^{L} u^{2} d y$
The velocity of each mass element of the spring is directly proportional to its length, i.e.
$u=\frac{v y}{L},$ from which it follows$:$
${T=\frac{1}{2} \frac{m}{L} \int_{0}^{L}\left(\frac{v y}{L}\right)^{2} d y}$
${=\frac{1}{2} \frac{m}{L^{3}} v^{2} \int_{0}^{L} y^{2} d y}$
${=\frac{1}{2} \frac{m}{L^{3}} v^{2}\left[\frac{y^{3}}{3}\right]_{0}^{L}}$
${=\frac{1}{2} \frac{m}{3} v^{2}}$