9.Straight Line
hard

A square of side a lies above the $x$ -axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha ,(0 < \alpha < \frac{\pi }{4})$ with the positive direction of $x$-axis. The equation of its diagonal not passing through the origin is

A

$y(\cos \alpha - \sin \alpha ) - x(\sin \alpha - \cos \alpha ) = a$

B

$y(\cos \alpha + \sin \alpha ) - x(\sin \alpha - \cos \alpha ) = a$

C

$y(\cos \alpha + \sin \alpha ) + x(\sin \alpha + \cos \alpha ) = a$

D

$y(\cos \alpha + \sin \alpha ) + x(\sin \alpha - \cos \alpha ) = a$

(AIEEE-2003)

Solution

(b) Co-ordinates of $A = (a\cos \alpha ,\,a\sin \alpha )$
Equation of $OB$, $y = \tan \left( {\frac{\pi }{4} + \alpha } \right)\,x$
$\because$  $CA\,\,{ \bot ^r}\,\,{\rm{to}}\,\,OB$
$\therefore$  Slope of $CA = – \cot \left( {\frac{\pi }{4} + \alpha } \right)$
Equation of CA,$y – a\sin \alpha = – \cot \left( {\frac{\pi }{4} + \alpha } \right)\,(x – a\cos \alpha )$
==> $y(\sin \alpha + \cos \alpha ) + x(\cos \alpha – \sin \alpha ) = a$
$ \Rightarrow $ $y\,(\cos \alpha + \sin \alpha ) – x\,(\sin \alpha – \cos \alpha ) = a$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.