अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श प्रत्येक निर्देशाक्ष से इकाई लम्बाई का अन्त: खण्ड काटता है, तो बिन्दु $(a, b)$ निम्न समकोणीय अतिपरवलय पर होगा 

  • A

    ${x^2} - {y^2} = 2$

  • B

    ${x^2} - {y^2} = 1$

  • C

    ${x^2} - {y^2} = - 1$

  • D

    इनमें से कोई नहीं

Similar Questions

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

नाभियाँ $(\pm 3 \sqrt{5}, 0),$ नाभिलंब जीवा की लंबाई $8$ है।

उस अतिपरवलय का समीकरण जिसकी अक्ष, निर्देशाक्षों के सापेक्ष हों एवं जिसकी नाभियों के बीच की दूरी $16$ तथा उत्केन्द्रता $\sqrt 2 $ हो, है

अतिपरवलय $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ के लिए $'\alpha '$ का मान परिवर्तित करने पर निम्न में से क्या अचर रहेगा

  • [IIT 2003]

एक अतिपरवलय का केंद्र मूल बिंदु पर है, तथा यह बिंदु $(4,2)$ से होकर जाता है और इसका अनुप्रस्थ (transverse) अक्ष, $x$-अक्ष के अनुदिश है जिसकी लम्बाई $4$ है। तो इस अतिपरवलय की उत्कें द्रता (eccentricity) है 

  • [JEE MAIN 2019]

माना अतिपरवलय $H : \frac{ x ^2}{ a ^2}- y ^2=1$ तथा दीर्घवत्त $E : 3 x ^2+4 y ^2=12$ इस प्रकार है कि $H$ तथा $E$ के नाभिलम्बों की लम्बाईयाँ समान हैं। यदि $e _{ H }$ तथा $e_E$ क्रमशः $H$ तथा $E$ की उत्केन्द्रताएं हो, तो $12\left( e _{ H }^2+ e _{ E }^2\right)$ का मान होगा $...............$

  • [JEE MAIN 2022]