अतिपरवलय ${x^2} - 3{y^2} = 2x + 8$ के संयुग्मी अतिपरवलय की उत्केन्द्रता होगी

  • A

    $\frac{2}{{\sqrt 3 }}$

  • B

    $\sqrt 3 $

  • C

    $2$

  • D

    इनमें से कोई नहीं

Similar Questions

सरल रेखा $lx + my = n$ का अतिपरवलय ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ पर अभिलम्ब होने का प्रतिबन्ध होगा

निम्नलिखित अतिपरवलयों के शीर्षों और नाभियों के निर्देशांकों, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।

$y^{2}-16 x^{2}=16$

यदि अतिपरवलय की नियता $x + 2y = 1$, नाभि $(2, 1)$ तथा उत्केन्द्रता $2$ हो तो उसका समीकरण होगा

अतिपरवलय $9{x^2} - 16{y^2} = 144$ पर स्थित किसी बिन्दु की नाभीय दूरियों का अन्तर है

माना कि $H: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, जहाँ $a>b>0, x y$ - समतल (plane) में एक ऐसा अतिपरवलय (hyperbola) है जिसका संयुग्मी अक्ष (conjugate axis) $L M$ उसके एक शीर्ष (vertex) $N$ पर $60^{\circ}$ का कोण (angle) अंतरित (subtend) करता है। माना कि त्रिभुज (triangle) $L M N$ का क्षेत्रफल (area) $4 \sqrt{3}$ है।

सूची - $I$ सूची - $II$
$P$ $H$ के संयुग्मी अक्ष की लम्बाई है $1$ $8$
$Q$ $H$ की उत्केन्द्रता (eccentricity) है $2$ ${\frac{4}{\sqrt{3}}}$
$R$ $H$ की नाभियों (foci) के बीच की दूरी है $3$ ${\frac{2}{\sqrt{3}}}$
$S$ $H$ के नाभिलम्ब जीवा (latus rectum) की लम्बाई है $4$ $4$

दिए हुए विकल्पों मे से सही विकल्प है:

  • [IIT 2018]