For the ellipse $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$, the eccentricity is

  • A

    $\frac{3}{4}$

  • B

    $\frac{4}{3}$

  • C

    $\frac{2}{{\sqrt 7 }}$

  • D

    $1\over3$

Similar Questions

For the ellipse $25{x^2} + 9{y^2} - 150x - 90y + 225 = 0$ the eccentricity $e = $

If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b} \right)$ is twice the area of the ellipse, then the eccentricity of the ellipse is

The line $lx + my - n = 0$ will be tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if

Area of the quadrilaterals formed by drawing tangents at the ends of latus recta of $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is

What will be the equation of that chord of ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1$ which passes from the point $(2,1)$ and bisected on the point