For the ellipse $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$, the eccentricity is
$\frac{3}{4}$
$\frac{4}{3}$
$\frac{2}{{\sqrt 7 }}$
$1\over3$
For the ellipse $25{x^2} + 9{y^2} - 150x - 90y + 225 = 0$ the eccentricity $e = $
If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b} \right)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
The line $lx + my - n = 0$ will be tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if
Area of the quadrilaterals formed by drawing tangents at the ends of latus recta of $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is
What will be the equation of that chord of ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1$ which passes from the point $(2,1)$ and bisected on the point