For the ellipse $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$, the eccentricity is

  • A

    $\frac{3}{4}$

  • B

    $\frac{4}{3}$

  • C

    $\frac{2}{{\sqrt 7 }}$

  • D

    $1\over3$

Similar Questions

What is the equation of the ellipse with foci $( \pm 2,\;0)$ and eccentricity $ = \frac{1}{2}$

Let $PQ$ be a focal chord of the parabola $y^{2}=4 x$ such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3, 0)$. Let the line segment $PQ$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If $e$ is the eccentricity of the ellipse $E$, then the value of $\frac{1}{e^{2}}$ is equal to

  • [JEE MAIN 2022]

Let $L$ be a tangent line to the parabola $y^{2}=4 x-20$ at $(6,2)$ . If $L$ is also a tangent to the ellipse $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1,$ then the value of $b$ is equal to ..... .

  • [JEE MAIN 2021]

Consider the ellipse

$\frac{x^2}{4}+\frac{y^2}{3}=1$

Let $H (\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.

$List-I$ $List-II$
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is ($P$) $\frac{(\sqrt{3}-1)^4}{8}$
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is ($Q$) $1$
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is ($R$) $\frac{3}{4}$
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is ($S$) $\frac{1}{2 \sqrt{3}}$
  ($T$) $\frac{3 \sqrt{3}}{2}$

The correct option is:

  • [IIT 2022]

If the normal at any point $P$ on the ellipse cuts the major and minor axes in $G$ and $g$ respectively and $C$ be the centre of the ellipse, then