Two coaxial discs, having moments of inertia $I_1$ and $\frac{I_1}{2}$ are a rotating with respectively angular velocities $\omega_1$ and $\frac{\omega_1}{2}$, about their common axes. They are brought in contact with each other and thereafter they rotate with a common angular velocity. If $E_f$ and $E_i$ are the final and initial total energies, then $(E_f -E_i)$ is

  • [JEE MAIN 2019]
  • A

    $\frac{{{I_1}\omega _1^2}}{6}$

  • B

    $\frac{3}{8}{I_1}\omega _1^2$

  • C

    $ - \frac{{{I_1}\omega _1^2}}{{12}}$

  • D

    $ - \frac{{{I_1}\omega _1^2}}{{24}}$

Similar Questions

$A$ ring of mass $m$ and radius $R$ has three particles attached to the ring as shown in the figure. The centre of the ring has a speed $v_0$. The kinetic energy of the system is: (Slipping is absent)

A student of mass $M$ is $1.5 \,m$ tall and has her centre of mass $1 \,m$ above ground when standing straight. She wants to jump up vertically. To do so. she bends her knees so that her centre of mass is lowered by $0.2 \,m$ and then pushes the ground by a constant force F. As a result, she jumps up such that the maximum height of her feet is $0.3 \,m$ above ground. The ratio $F / Mg$ is

  • [KVPY 2021]

Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities $\omega_1$ and $\omega_2$ They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is 

  • [NEET 2017]

A ball rolls without slipping.  The radius of gyration of the ball about an axis passing through its centre of mass $K$. If radius of the ball be $R$, then the fraction of total energy associated with its rotational energy will be 

  • [AIPMT 2003]

A solid cylinder length is suspended symmetrically through two massless strings, as shown in the figure. The distance from the initial rest position, the cylinder should by unbinding the strings to achieve a speed of $4\,ms ^{-1}$, is$........cm$. $\left(\right.$ take $\left.g=10\,ms ^{-2}\right)$

  • [JEE MAIN 2022]