एक पतली विधुत चालक $R$ त्रिज्या की रिंग(छल्ले) को $+ Q$ आवेश दिया गया है। रिंग के केन्द्र $O$ पर रिंग के भाग $AKB$ के आवेश के कारण विधुत फील्ड का मान $E$ है। रिंग के शेष भाग $ACDB$ के आवेश के कारण केन्द्र $O$ पर विधुत क्षेत्र का मान होगा :
$E , KO$ दिशा में
$3E , OK $ दिशा में
$3E , KO$ दिशा में
$E , OK$दिशा में
एक आवेशित खोखला गोला विद्युत क्षेत्र उत्पन्न नहीं करता
चित्रानुसार छड़ $AB , 120^{\circ}$ पर $R$ त्रिज्या के चाप में मोड़ी जाती है। आवेश $(- Q )$ छड़ $AB$ पर एकसमान रूप से वितरित होता है। वक्रता केन्द्र $O$ पर विधुत क्षेत्र $\overrightarrow{ E }$ क्या होगा ?
निम्न चार स्थितियों में आवेशित कण मूल बिन्दू से बराबर - बराबर दूरियों पर स्थित हैं मूल बिन्दु पर विद्युत क्षेत्र के परिमाण को अधिकतम पहले लेते हुये इन्हें व्यवस्थित करें
एक ऊर्ध्वाधर विद्युत क्षेत्र का परिमाण $4.9 \times 10^5\,N / C$ है। यह द्रव्यमान $0.1\,g$ वाली जल की बूँद को गिरने से रोकता है। बूँद पर आवेश का मान ........ $\times 10^{-9} \;C$ -(दिया गया है $g =9.8\,m / s ^2$ )
$L (=20 cm )$ लम्बाई के एक तार को एक अर्ध वृत्ताकार चाप के रूप में मोड़ दिया गया है। यदि इस चाप के दो समान भागों को $\pm Q$ आवेश से एकसमान आवेशित कर दिया जाय $\left[| Q |=10^{3} \varepsilon_{0}\right.$ कूलॉम जहाँ $\varepsilon_{0}$ ($SI$ मात्रक में) मुक्त आकाश की विद्युतशीलता (परावैद्युतांक) है ], तो, अर्धवृत्ताकार चाप के केन्द्र $O$ पर नेट विद्युत क्षेत्र होगा :