${10^{ - 5}}$ सेमी त्रिज्या वाली जल की एक बूँद पर एक इलेक्ट्रॉन का आवेश है। उसे वायु में निलम्बित करने के लिए आवश्यक वैद्युत क्षेत्र की तीव्रता होगी लगभग
($g$ = $10$ न्यूटन/किग्रा, $e$ = $1.6 × 10^{-9}$ कूलॉम)
$260\,$ वोल्ट/सेमी
$260\,$ न्यूटन/कूलॉम
$130\,$ वोल्ट/सेमी
$130\,$ न्यूटन/कूलॉम
एक समान आवेशित दीवार $2 \times 10^4 \mathrm{~N} / \mathrm{C}$ का लम्बवत एक समान वैद्युत क्षेत्र प्रदान करता है। $2$ ग्राम द्रव्यमान का एक आवेशित कण $20$ सेमी. लम्बे एक सिल्क के धागे से लटका है तथा यह दीवार से $10$ सेमी. की दूरी पर ठहरा है। कण पर आवेश $\frac{1}{\sqrt{\mathrm{x}}} \mu \mathrm{C}$ होगा जहाँ $\mathrm{x}=$. . . . . . . . . .[दिया है $g=10 \mathrm{~m} / \mathrm{s}^2$ ]
भुजा $a$ वाले एक वर्ग के कोनों पर तीन आवेश $q / 2$, $q$ और $q / 2$ चित्रानुसार रखे हैं। वर्ग के कोने $D$ पर विद्युत क्षेत्र $(E)$ का परिमाण होगा
$ABC$ एक समबाहु त्रिभुज है। प्रत्येक शीर्ष पर $ + \,q$ आवेश रखा गया है। बिन्दु $O$ पर वैद्युत क्षेत्र की तीव्रता होगी
एक धनावेशित गेंद को सिल्क के धागे से लटकाया गया है। यदि हम एक बिन्दु पर धनात्मक परीक्षण आवेश ${q_0}$ रखते हैं एवं $F/{q_0}$ को मापते हैं तो यह कहा जा सकता है कि विद्युत क्षेत्र प्राबल्य $E$
दो बिन्दु आवेश $( + Q)$ तथा $( - 2Q)$ $X-$अक्ष पर मूल बिन्दु से क्रमश: $a$ तथा $2a$ स्थितियों पर स्थिर हैं। अक्ष पर किस स्थिति में परिणामी विद्युत क्षेत्र शून्य होगा