10-1.Thermometry, Thermal Expansion and Calorimetry
medium

A thin rod having a length of $1\; m$ and area of cross-section $3 \times 10^{-6}\,m ^2$ is suspended vertically from one end. The rod is cooled from $210^{\circ}\,C$ to $160^{\circ}\,C$. After cooling, a mass $M$ is attached at the lower end of the rod such that the length of rod again becomes $1\,m$. Young's modulus and coefficient of linear expansion of the rod are $2 \times 10^{11} Nm ^{-2}$ and $2 \times 10^{-5} K ^{-1}$, respectively. The value of $M$ is $.......kg .\left(\right.$ Take $\left.g=10\,m s ^{-2}\right)$

A

$60$

B

$59$

C

$58$

D

$57$

(JEE MAIN-2023)

Solution

If $\Delta l$ is decease in length of rod due to decease in temperature

$\Delta l=l \alpha \Delta T$

$\alpha=2 \times 10^{-5}\,K ^{-1}, \Delta T =(210-160)=50\,K$

$\Delta l=1 \times 2 \times 10^{-5} \times 50=10^{-3}\,m$

$\text { Young Modulus }= Y =\frac{ F / A }{\Delta l / l} \quad A =3 \times 10^{-6}\,m ^2$

$2 \times 10^{11}=\frac{ Mg / 3 \times 10^{-6}}{10^{-3} / 1}$

$Mg =2 \times 10^{11} \times 3 \times 10^{-9}=6 \times 10^{-2}$

$M =60\,kg$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.