$1\,m$ लम्बी दो समानान्तर पट्यिों के बीच, $E =$ $(8 m / e )\,V / m$ मान का एकसमान विद्युत क्षेत्र उत्पन्न किया जाता है, (जहाँ $m =$ इलेक्ट्रॉन का द्रव्यमान एवं $e =$ इलेक्ट्रॉन का आवेश) दोनों पट्टियों के बीच सममित रूप से एक इलेक्ट्रॉन $2\,m / s$ की चाल से प्रवेश करता है। जब यह इलेक्ट्रॉन विद्युत क्षेत्र से बाहर निकलता है, तो इसके पथ में हुए विक्षेप का कोण होगा :
$\tan ^{-1} (4)$
$\tan ^{-1}(2)$
$\tan ^{-1}\left(\frac{1}{3}\right)$
$\tan ^{-1} (3)$
अभ्यास में वर्णित कण की इलेक्ट्रॉन के रूप में कल्पना कीजिए जिसको $v_{x}=2.0 \times 10^{6}$ $m s ^{-1}$ के साथ प्रक्षेपित किया गया है। यदि $0.5 \,cm$ की दूरी पर रखी प्लेटों के बीच बिदुत क्षेत्र $E$ का मान $9.1 \times 10^{2}\, N / C$ हो तो ऊपरी प्लेट पर इलेक्ट्रॉन कहाँ टकराएगा? $\left(|e|=1.6 \times 10^{-19} C , m_{e}=9.1 \times 10^{-31} kg .\right)$
मिलिकन के तेल बूँद प्रयोग में एक आवेशित बूँद सीमान्त वेग $v$ से गिरती है। यदि $E$ परिमाण का विद्युत क्षेत्र अग्र दिशा में आरोपित करने पर बूँद अग्र दिशा में $2v$ सीमान्त वेग से गति प्रारम्भ कर देती है, तो विद्युत क्षेत्र का मान घटाकर $\frac{E}{2}$ करने पर सीमान्त वेग का मान होगा
कोई इलेक्ट्रॉन $2.0 \times 10^{4}\, N C ^{-1}$ परिमाण के एकसमान विध्यूत क्षेत्र में $1.5 \,cm$ दूरी तक गिरता है [चित्र $( a )]$ । क्षेत्र का परिमाण समान रखते हुए इसकी दिशा उत्क्रमित कर दी जाती है तथा अब कोई प्रोटोन इस क्षेत्र में उतनी ही दूरी तक गिरता है [ चित्र $( b )$ ]। दोनों प्रकरणों में गिरने में लगे समय की गणना कीजिए। इस परिस्थिति की 'गुरूत्व के अधीन मुक्त पतन' से तुलना कीजिए।
प्रारंभ में $x$ -अक्ष के अनुदिश $v_{x}$ चाल से गति करती हुई दो आवेशित प्लेटों के मध्य क्रेत्र में $m$ द्रब्यमान तथा $-q$ आवेश का एक कण प्रवेश करता है ( चित्र में कण $1$ के समान )। प्लेटों की लंबाई $L$ है। इन दोनों प्लेटों के बीच एकसमान विध्युत क्षेत्र $E$ बनाए रखा जाता है। दर्शाइए कि प्लेट के अतिम किनारे पर कण का ऊर्ध्वाधर विक्षेप $q E L^{2} /\left(2 m v_{x}^{2}\right)$ है।
एक इलेक्ट्रॉन पर आवेश ‘$e$’ तथा द्रव्यमान ‘$m$’ है, समरूप विद्युत क्षेत्र $E$ में गति कर रहा है। इसका त्वरण होगा