8.Mechanical Properties of Solids
hard

A uniform heavy rod of mass $20\,kg$. Cross sectional area $0.4\,m ^{2}$ and length $20\,m$ is hanging from a fixed support. Neglecting the lateral contraction, the elongation in the rod due to its own weight is $x \times 10^{-9} m$. The value of $x$ is

(Given. Young's modulus $Y =2 \times 10^{11} Nm ^{-2}$ અને $\left.g=10\, ms ^{-2}\right)$

A

$28$

B

$25$

C

$24$

D

$23$

(JEE MAIN-2022)

Solution

$Y =\frac{ T }{ A } \frac{ dx }{ dy }$

$m =20\,kg$

$A =0.4\,m^{2}$

$1=20\,m$

let extension is $dy$ in length $dx$

$Y =\frac{\text { stress }}{\text { strain }}$

$Y =\frac{\frac{ T }{ A }}{\frac{ d }{ dx }}=\frac{ T }{ A } \cdot \frac{ dx }{ dy }$

$dy =\frac{ Tdx }{ AY }$

Tension at a distance $x$ from lower end $=\frac{ mg }{\ell} x$

So. $\int_{0}^{\Delta l} dy =\int_{0}^{\ell} \frac{ mg }{\ell} x \frac{ dx }{ AY }$

$\Delta \ell=\frac{ mg }{\ell AY }\left[\frac{ x ^{2}}{2}\right]_{0}^{\ell}$

$\Delta \ell=\frac{ mg \ell}{2\,AY }$

$\Delta \ell=\frac{20 \times 10 \times 20}{2 \times 0.4 \times 2 \times 10^{11}}$

$2500 \times 10^{-11}$

$\Delta \ell=25 \times 10^{-9}$

$= x \times 10^{-9}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.