If the temperature of a wire of length $2 \,m$ and area of cross-section $1 \,cm ^2$ is increased from $0^{\circ} C$ to $80^{\circ} C$ and is not allowed to increase in length, then force required for it is ............$N$ $\left\{Y=10^{10} \,N / m ^2, \alpha=10^{\left.-6 /{ }^{\circ} C \right\}}\right.$

  • A

    $80$

  • B

    $160$

  • C

    $400$

  • D

    $120$

Similar Questions

The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied ?

The Young's modulus of a steel wire of length $6\,m$ and cross-sectional area $3\,mm ^2$, is $2 \times 11^{11}\,N / m ^2$. The wire is suspended from its support on a given planet. A block of mass $4\,kg$ is attached to the free end of the wire. The acceleration due to gravity on the planet is $\frac{1}{4}$ of its value on the earth. The elongation of wire is  (Take $g$ on the earth $=10$ $\left.m / s ^2\right):$

  • [JEE MAIN 2023]

A structural steel rod has a radius of $10 \;mm$ and a length of $1.0 \;m$. A $100 \;kN$ force stretches it along its length. Calculate $(a)$ stress, $(b)$ elongation, and $(c)$ strain on the rod. Young's modulus, of structural steel $1 s 2.0 \times 10^{11} \;N m ^{-2}$

With rise in temperature, the Young's modulus of elasticity

  • [JEE MAIN 2024]

Steel and copper wires of same length are stretched by the same weight one after the other. Young's modulus of steel and copper are $2 \times {10^{11}}\,N/{m^2}$ and $1.2 \times {10^{11}}\,N/{m^2}$. The ratio of increase in length