Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?
$f(x)=[x]$ for $x \in[-2,2]$
By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if
a) $f$ is continuous on $[a, b]$
b) $f$ is continuous on $(a, b)$
c) $f(a)=f(b)$
Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$
Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
$f(x)=[x]$ for $x \in[-2,2]$
It is evident that the given function $f(x)$ is not continuous at every integral point.
In particular, $f(x)$ is not continuous at $x=-2$ and $x=2$
$\Rightarrow f=(x)$ is not continuous in $[-2,2]$
Also, $f(-2)=[2]=-2$ and $f(2)=[2]=2$
$\therefore f(-2) \neq f(2)$
The differentiability of in $(-2,2)$ is checked as follows.
Let $\mathrm{n}$ be an integer such that $n \in(-2,2)$
The left hand limit of $f$ at $x=\mathrm{n}$ is,
$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - 1 - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{ - 1}}{h} = \infty $
The right hand limit of $f$ at $x=n$ is,
$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} 0 = 0$
Since the left and right hand limits of $f$ at $x=n$ are not equal, $f$ is not differentiable at $x=n$
$\therefore f$ is not continuous in $(-2,2).$
It is observed that $f$ does not satisfy all the conditions of the hypothesis of Rolle's Theorem.
Hence, Roller's Theorem is not applicable for $f(x)=[x]$ for $x \in[-2,2]$
Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$
Let $f(x)$ satisfy the requirement of lagranges mean value theorem in $[0,2]$ . If $f(x)=0$ ; $\left| {f'\left( x \right)} \right| \leqslant \frac{1}{2}$ for all $x \in \left[ {0,2} \right]$, then-
If the function $f(x) = - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals
If $f:R \to R$ and $f(x)$ is a polynomial function of degree ten with $f(x)=0$ has all real and distinct roots. Then the equation ${\left( {f'\left( x \right)} \right)^2} - f\left( x \right)f''\left( x \right) = 0$ has
Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval