જો $\left| {\begin{array}{*{20}{c}}
{1 + {{\cos }^2}\,\theta }&{{{\sin }^2}\,\theta }&{4\,\cos \,6\theta } \\
{{{\cos }^2}\,\theta }&{1 + {{\sin }^2}\,\theta }&{4\,\cos \,6\theta } \\
{{{\cos }^2}\,\theta }&{{{\sin }^2}\,\theta }&{1 + 4\,\cos \,6\theta }
\end{array}} \right| = 0$ થાય તો $\theta \in (0, \pi /3)$ ની કિમંત મેળવો .
$\frac{\pi }{18}$
$\frac{\pi }{9}$
$\frac{7\pi }{36}$
$\frac{7\pi }{24}$
$\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$ નું મૂલ્ય શોધો.
$\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 4}\\{x + 3}&{x + 5}&{x + 8}\\{x + 7}&{x + 10}&{x + 14}\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + 2b}\\{a + 2b}&a&{a + b}\\{a + b}&{a + 2b}&a\end{array}\,} \right|$ =. . .
જો $a,b,c$ એ ધન પૂર્ણાંક હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ એ . . . વડે વિભાજ્ય છે.
જો $a + b + c = 0$, તો સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.