एक पानी की बूंद जिसकी त्रिज्या $1\,\mu m$ है, ऐसी स्थिति में गिरती है, जहाँ उत्पलावक बल का प्रभाव नगण्य है। यदि वायु का श्यानता गुणांक $1.8 \times 10^{-5}\,Nsm ^{-2}$ है तथा इसका घनत्व पानी के घनत्व $10^6\,gm ^{-3}$ की तुलना में नगण्य हो तो पानी की बूँद का सीमान्त वेग $..........\times 10^{-6}\,ms ^{-1}$ होगा (गुरूत्वीय त्वरण $g =10\,ms ^{-2}$ )

  • [JEE MAIN 2022]
  • A

    $145.4$

  • B

    $118.0$

  • C

    $132.6$

  • D

    $123.4$

Similar Questions

समान द्रव्यमान के दो लघु गोलीय धातु गैदें $1\;mm$ तथा $2 \;mm$ त्रिज्या तथा $\rho_1$ व $\rho_2\; (\rho_1 = 8\rho_2)$ घनत्व के पदार्थों की बनी हुई है। ये एक श्यान माध्यम में ऊर्ध्वाधर गिरती है जिनका श्यानता गुणांक बराबर है तथा जिसका घनत्व $0.1\rho_2$ है। इनके सीमांत वेगो का अनुपात होगा

  • [NEET 2019]

एक गेंद जिसकी त्रिज्या $r$  व घनत्व है, गुरुत्व के अधीन मुक्त रूप से गिर रही है। $h $ ऊँचाई से गिरने के पश्चात् वह जल में प्रवेश करती है। जल में प्रवेश करने के पश्चात् भी उसकी चाल नियत बनी रहती है। जल की श्यानता हो, तो h का मान होगा

त्रिज्या $R =0.2 \,mm$ वर्षा की कोई बूंद धरती से ऊपर ऊँचाई $h =2000 \,m$ के किसी बादल से गिरती है। उत्प्लावन बल को नगण्य माना गया है। यह मानते हुए कि यह बूंद गिरते सदैव गोलीय रहती है, इस वर्षा की बूंद द्वारा प्राप्त अंतिम चाल होगी।

[जल का घनत्व $f_{ w }=1000\, kg\, m ^{-3}$ वायु का घनत्व $f_{ a }$ $=1.2 \,kg m ^{-3}, g =10\, m / s ^{2}$ वायु का श्यानता गुणांक $=1.8 \times 10^{-5} \,Nsm ^{-2}$ ]

  • [JEE MAIN 2021]

$1750 \mathrm{~kg} / \mathrm{m}^3$ घनत्व के एक घोल में $6 \mathrm{~mm}$ व्यास का एक वायु का बुलबुला $0.35 \mathrm{~cm} / \mathrm{s}$. की दर से उठता है। घोल का श्यानता गुणांक_________Pas है (वायु का घनत्व नगण्य मानकर एवं दिया है, $\left.\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

  • [JEE MAIN 2023]

$2 .0\, mm$ त्रिज्या वाली एक ताँबे की गेंद $20^{\circ} C$ पर $6.5 \,cm s ^{-1}$ सीमांत वेग से तेल के टेंक में गिर रही है। $20^{\circ}\, C$ पर तेल की श्यानता का आकलन कीजिए। तेल का घनत्व $1.5 \times 10^{3}\, kg\, m ^{-3}$ तथा ताँबे का घनत्व $8.9 \times 10^{3}\, kg\, m ^{-3}$ है