त्रिज्या $R =0.2 \,mm$ वर्षा की कोई बूंद धरती से ऊपर ऊँचाई $h =2000 \,m$ के किसी बादल से गिरती है। उत्प्लावन बल को नगण्य माना गया है। यह मानते हुए कि यह बूंद गिरते सदैव गोलीय रहती है, इस वर्षा की बूंद द्वारा प्राप्त अंतिम चाल होगी।

[जल का घनत्व $f_{ w }=1000\, kg\, m ^{-3}$ वायु का घनत्व $f_{ a }$ $=1.2 \,kg m ^{-3}, g =10\, m / s ^{2}$ वायु का श्यानता गुणांक $=1.8 \times 10^{-5} \,Nsm ^{-2}$ ]

  • [JEE MAIN 2021]
  • A

    $14.4$

  • B

    $2.47$

  • C

    $43.56$

  • D

    $4.94$

Similar Questions

समान द्रव्यमान के दो लघु गोलीय धातु गैदें $1\;mm$ तथा $2 \;mm$ त्रिज्या तथा $\rho_1$ व $\rho_2\; (\rho_1 = 8\rho_2)$ घनत्व के पदार्थों की बनी हुई है। ये एक श्यान माध्यम में ऊर्ध्वाधर गिरती है जिनका श्यानता गुणांक बराबर है तथा जिसका घनत्व $0.1\rho_2$ है। इनके सीमांत वेगो का अनुपात होगा

  • [NEET 2019]

एक पानी की बूंद जिसकी त्रिज्या $1\,\mu m$ है, ऐसी स्थिति में गिरती है, जहाँ उत्पलावक बल का प्रभाव नगण्य है। यदि वायु का श्यानता गुणांक $1.8 \times 10^{-5}\,Nsm ^{-2}$ है तथा इसका घनत्व पानी के घनत्व $10^6\,gm ^{-3}$ की तुलना में नगण्य हो तो पानी की बूँद का सीमान्त वेग $..........\times 10^{-6}\,ms ^{-1}$ होगा (गुरूत्वीय त्वरण $g =10\,ms ^{-2}$ )

  • [JEE MAIN 2022]

निम्नलिखित में से कौन-सा विकल्प उस बिन्दु-द्रव्यमान की गति $' v '$ और त्वरण $' a '$ के बदलाव को सही तरह से दर्शाता है जो कि किसी श्यान माध्यम में ऊर्ध्वाधर दिशा में नीचे की ओर गिरते हुए माध्यम के कारण एक बल $F=-k v$, जहाँ पर $' k '$ एक नियतांक है, का अनुभव करता है। (ग्राफों का व्यवस्थात्मक निरूपण माप के अनुसार नहीं है।)

  • [JEE MAIN 2016]

स्टोक्स नियम प्रमाणित करने के लिए एक परीक्षण में एक छोटी गोली जिसकी त्रिज्या $r$ एवं घनत्व $\rho$ है, एक पानी से भरी टंकी की सतह से $h$ ऊँचाई से गुरूत्वीय क्षेत्र के अन्तर्गत गिरायी जाती है। यदि गोली का पानी में घुसने से तुरंत पहले पानी के अंदर सीमान्त वेग पानी में वेग के बराबर हो तो $h , r$ पर इस प्रकार समानुपाती है : (वायु की श्यानता गुणांक लें)

  • [JEE MAIN 2020]

$'r'$  त्रिज्या की गोलाकार गेंद, ''' श्यानता वाले द्रव में $ 'v'$  वेग से गिर रही है। गेंद पर कार्यरत मंदक श्यान बल

  • [AIEEE 2004]