A wire of $9.8 \times {10^{ - 3}}kg{m^{ - 1}}$ passes over a frictionless light pulley fixed on the top of a frictionless inclined plane which makes an angle of $30°$ with the horizontal. Masses $m$ and $M$ are tied at the two ends of wire such that $m$ rests on the plane and $M$ hangs freely vertically downwards. The entire system is in equilibrium and a transverse wave propagates along the wire with a velocity of $100 ms^{-1}$. Chose the correct option $m =$ ..... $kg$

107-36

  • A

    $20$

  • B

    $5$

  • C

    $ 2$

  • D

    $ 7$

Similar Questions

The transverse displacement of a string (clamped at its both ends) is given by

$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$

where $x$ and $y$ are in $m$ and $t$ in $s$. The length of the string is $1.5\; m$ and its mass is $3.0 \times 10^{-2}\; kg$

Answer the following:

$(a)$ Does the function represent a travelling wave or a stationary wave?

$(b)$ Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?

$(c)$ Determine the tension in the string.

A wire of density $9 \times 10^{-3} \,kg\, cm ^{-3}$ is stretched between two clamps $1\, m$ apart. The resulting strain in the wire is $4.9 \times 10^{-4}$. The lowest frequency of the transverse vibrations in the wire is......$HZ$

(Young's modulus of wire $Y =9 \times 10^{10}\, Nm ^{-2}$ ), (to the nearest integer),

  • [JEE MAIN 2020]

In the figure shown a mass $1\  kg$ is connected to a string of mass per unit length $1.2\  gm/m$ . Length of string is $1\  m$ and its other end is connected to the top of a ceiling which is accelerating up with an acceleration $2\  m/s^2$ . A transverse pulse is produced at the lowest point of string. Time taken by pulse to reach the top of string is .... $s$

One end of a long string of linear mass density $8.0 \times 10^{-3}\;kg m ^{-1}$ is connected to an electrically driven tuning fork of frequency $256\; Hz$. The other end passes over a pulley and is tied to a pan containing a mass of $90 \;kg$. The pulley end absorbs all the incoming energy so that reflected waves at this end have negligible amplitude. At $t=0,$ the left end (fork end) of the string $x=0$ has zero transverse displacement $(y=0)$ and is moving along positive $y$ -direction. The amplitude of the wave is $5.0\; cm .$ Write down the transverse displacement $y$ as function of $x$ and $t$ that describes the wave on the string.

Which of the following statements is incorrect during propagation of a plane progressive mechanical wave ?