न्यूटन के अनुसार, किसी द्रव की पर्तों के बीच लगने वाला श्यान बल $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ होता है । जहाँ $A$ द्रव की सतह का क्षेत्रफल, $\Delta v/\Delta z$ वेग प्रवणता और $\eta $ श्यानता गुणांक है तब $\eta $ की विमा होगी
$[M{L^2}{T^{ - 2}}]$
$[M{L^{ - 1}}{T^{ - 1}}]$
$[M{L^{ - 2}}{T^{ - 2}}]$
$[{M^0}{L^0}{T^0}]$
$m$ द्रव्यमान एवं $r$ त्रिज्या की एक गोलीय वस्तु $\eta $ श्यानता के माध्यम में गिर रही है। वह समय जिसमें वस्तु का वेग शून्य से बढ़कर सीमान्त (टर्मिनल) वेग $v$ का $0.63$ गुना हो जाता है, समय नियतांक $\tau $ कहलाता है। विमीय रुप से $\tau $ को किसके द्वारा व्यक्त कर सकते हैं
निम्नलिखित में से कौन से समीकरण विमीय रूप से सत्य हैं ?
जहाँ $t =$ समय, $h =$ ऊँचाई, $s =$ पष्ठ तनाव, $\theta=$ कोण, $\rho=$ घनत्व, $a , r =$ त्रिज्या, $g =$ गुरूत्वीय त्वरण, $v =$ आयतन, $p =$ दाब, $W =$ किया गया कार्य, $\Gamma=$ बल आधूर्ण, $\varepsilon=$ विद्युत शीलता, $E =$ विद्युत क्षेत्र, $J =$ धारा घनत्व, $L =$ लंबाई।
सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $SI$ पद्धति में $Y$ की विमायें हैं
मुक्त रुप से गिरती हुई वस्तु का वेग ${g^p}{h^q}$ से परिवर्तित होता है, जहाँ $g$ गुरुत्वीय त्वरण तथा $h$ ऊँचाई है, तो $p$ और $q$ के मान होंगें