एक मेहराव अर्ध-दीर्घवृत्ताकार रूप का है। यह $8$ मीटर चौड़ा और केंद्र से $2$ मीटर ऊँचा है। एक सिरे से $1.5$ मीटर दूर बिंदु पर मेहराव की ऊँचाई ज्ञात कीजिए।
since the height and width of the are from the centre is $2\, m$ and $8\, m$ respectively, it is clear that the length of the major axis is $8\, m ,$ while the length of the semi-minor axis is $2 \,m$ The origin of the coordinate plane is taken as the centre of the ellipse, while the major axis is taken along the $x-$ axis. Hence, the semi-ellipse can be diagrammatically represented as
The equation of the semi-ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 y \geq 0,$ where a is the semimajor axis
Accordingly, $2 a=8 \Rightarrow a=4$ $b=2$
Therefore, the equation of the semi-ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1, y \geq 0$ ....... $(1)$
Let A be a point on the major axis such that $AB =1.5 \,m$
Draw $AC \perp OB$.
$OA =(4-1.5)\, m =2.5 \,m$
The $x-$ coordinate of point $C$ is $2.5$
On substituting the value of $x$ with $2.5$ in equation $(1),$ we obtain
$\frac{(2.5)^{2}}{16}+\frac{y^{2}}{4}=1$
$\Rightarrow \frac{6.25}{16}+\frac{y^{2}}{4}=1$
$\Rightarrow y^{2}=4\left(1-\frac{6.25}{16}\right)$
$\Rightarrow y^{2}=4\left(\frac{9.27}{16}\right)$
$\Rightarrow y^{2}=2.4375$
$\Rightarrow y=1.56 $ (approx.)
$\therefore AC =1.56 \,m$
Thus, the height of the arch at a point $1.5 \,m$ from one end is approximately $1.56 \,m$
$c$ के उन मानों की संख्या, जिनके लिये सरल रेखा $y = 4x + c$ वक्र $\frac{{{x^2}}}{4} + {y^2} = 1$ को स्पर्श करती है, है
यदि परवलय $y ^{2}= x$ के एक बिन्दु $(\alpha, \beta),(\beta>0)$ पर, स्पर्श रेखा, दीर्घवृत्त $x ^{2}+2 y ^{2}=1$ की भी स्पर्श रेखा है, तो $\alpha$ बराबर है
यदि दीर्घवृत्त $3 x ^{2}+4 y ^{2}=12$ के एक बिन्दु $P$ पर अभिलम्ब, रेखा $2 x + y =4$ के समान्तर है तथा $P$ पर दीर्घवृत की स्पर्श रेखा $Q (4,4)$ से होकर जाती है, तो $PQ$ बराबर हैं
यदि दीर्घवृत्त $25 x ^2+4 y ^2=1$ पर स्थित बिन्दु $(\alpha, \beta)$ से परवलय $y ^2=4 x$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती है कि एक स्पर्श रेखा की प्रवणता, दूसरी स्पर्श रेखा की प्रवणता की चार गुना है, तो $(10 \alpha+5)^2+\left(16 \beta^2+50\right)^2$ का मान
दीर्घवृत्त के नाभियों के बीच की दूरी 16 तथा उत्केन्द्रता $\frac{1}{2}$ है। दीर्घवृत्त के दीर्घाक्ष की लम्बाई है