दीर्घवृत्त, जिसका केन्द्र मूलबिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि एक नियता $x = 4$ है तब दीर्घवृत्त का समीकरण है
$4{x^2} + 3{y^2} = 1$
$3{x^2} + 4{y^2} = 12$
$4{x^2} + 3{y^2} = 12$
$3{x^2} + 4{y^2} = 1$
यदि दीर्घवृत्त का नाभिलम्ब उसकी लघु अक्ष के आधे के बराबर हो, तो उसकी उत्केन्द्रता है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $(a\cos \theta ,\;b\sin \theta )$ पर अभिलम्ब का समीकरण होगा
माना $\mathrm{C}$ सबसे बड़ा वृत्त है, जिसका केन्द्र $(2,0)$ पर है तथा जो दीर्घवृत $\frac{\mathrm{x}^2}{36}+\frac{\mathrm{y}^2}{16}=1$ के अंतर्गत है। यदि बिन्दु $(1, \alpha)$ वृत्त $C$ पर है, तो $10 \alpha^2$ बराबर है_______________.
दीर्घवृत्त $16{x^2} + 25{y^2} = 400$ की नियताओं के समीकरण हैं
दीर्घवृत्त $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ के नाभिलम्बों के सिरों पर खींची गई स्पर्श रेखाओं द्वारा निर्मित चतुर्भुज का क्षेत्रफल (वर्ग इकाइयों में) है