दीर्घवृत्त, जिसका केन्द्र मूलबिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि एक नियता $x = 4$ है तब दीर्घवृत्त का समीकरण है
$4{x^2} + 3{y^2} = 1$
$3{x^2} + 4{y^2} = 12$
$4{x^2} + 3{y^2} = 12$
$3{x^2} + 4{y^2} = 1$
उस दीर्घवृत्त का समीकरण जिसके शीर्ष $( \pm 5,\;0)$ तथा नाभियाँ $( \pm 4,\;0)$ हैं, होगा
दीर्घवृत्त $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$ का केन्द्र है
मान लीजिए कि $E$ दीर्घवृत्त (ellipse) $\frac{ x ^2}{16}+\frac{ y ^2}{9}=1$ को दर्शाता है। $E$ पर किसी भी तीन भिन्न बिन्दुओं $P , Q$ और $Q ^{\prime}$ के लिए, मान लीजिए कि $M ( P , Q ), P$ और $Q$ को मिलाने वाले रेखाखण्ड (line segment) का मध्यबिन्दु है, तथा $M \left( P , Q ^{\prime}\right), P$ और $Q ^{\prime}$ को मिलाने वाले रेखाखंड का मध्यबिन्दु है। जब $P , Q$ और $Q ^{\prime}, E$ पर परिवर्तित होते रहेते है, तब $M ( P , Q )$ और $M ( P , Q )$ के बीच की अधिकतम संभावित दूरी. . . . . .है।
माना दीर्घवृत्त $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर एक बिंदु $P$ है। माना $P$ से होकर जाने वाली तथा $y$-अक्ष के समांतर रेखा $x^2+y^2=9$ के बिंदु $Q$ पर मिलती है तथा $P$ और $Q$, $X$ अंक्ष के एक ही ओर है | तो $P$ के दिर्ध्वृत पर चलने पर $P Q$ पर एक बिंदु $R$ जिसके लिए $\mathrm{PR}: \mathrm{RQ}=4: 3$ हैं, के बिंदुपथ की उत्केन्द्रता है:
शांकव $16{x^2} + 7{y^2} = 112$ की उत्केन्द्रता है