यदि नियताओं के बीच की दूरी नाभियों के बीच की दूरी की तीन गुनी हो तो दीर्घवृत्त की उत्केन्द्रता होगी
$1\over2$
$2\over3$
$1\over \sqrt 3 $
$4\over5$
माना दीर्घवत्त $\frac{ x ^{2}}{9}+\frac{ y ^{2}}{1}=1$ तथा वत्त $x ^{2}+ y ^{2}=3$ के प्रथम चतुर्थाश में प्रतिच्छेदन बिन्दु पर स्पर्श रेखाओं के बीच न्यून कोण $\theta$ है। तब $\tan \theta$ बराबर है
दीर्घवृत्त $16{x^2} + 25{y^2} = 400$ की नियताओं के समीकरण हैं
दीर्घवृत्त $\mathrm{E}: \frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की नियता $\mathrm{x}=8$ है तथा संगत नाभि $(2,0)$ है। यदि प्रथम चतुर्थांश में $\mathrm{E}$ के बिन्दु $\mathrm{P}$ पर स्पर्श रेखा, बिन्दु $(0,4 \sqrt{3})$ से होकर जाती है तथा $\mathrm{x}$-अक्ष को $\mathrm{Q}$ पर काटती है, तो $(3 \mathrm{PQ})^2$ बराबर है _______________
एक दीर्घवृत्त, जिसका केंद्र मूल बिंदु पर है तथा दीर्घ अक्ष $x$-अक्ष की दिशा में है, पर विचार कीजिए। यदि उसकी उत्केन्द्रता $\frac{3}{5}$ तथा नाभियों के बीच की दूरी $6$ है, तो उस चतुर्भुज, जो दीर्घवृत्त के अन्तर्गत बनाई गई है तथा जिसके शीर्ष, दीर्घवृत्त के शीर्षों पर हैं, का क्षेत्रफल (वर्ग इकाइयों में) है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के नाभिलम्ब के सिरों के उत्केन्द्र कोण हैं