An electron enters a chamber in which an uniform magnetic field is present as shown in figure. Ignore gravity. During its motion inside the chamber
the force on the electron remains constant
the kinetic energy of the electron remains constant
the momentum of the electron remains constant
the speed of the electron increases at a uniform rate
An electron is moving along the positive $X$-axis. You want to apply a magnetic field for a short time so that the electron may reverse its direction and move parallel to the negative $X$-axis. This can be done by applying the magnetic field along
A singly ionized magnesium atom $(A=24)$ ion is accelerated to kinetic energy $5\,keV$ and is projected perpendicularly into a magnetic field $B$ of the magnitude $0.5\,T$. The radius of path formed will be___________ $cm$
As shown in the figure, the uniform magnetic field between the two identical plates is $B$. There is a hole in plate. If through this hole a particle of charge $q$, mass $m$ and energy $E$ enters this magnetic field, then the particle will not collide with the upper plate provided
Consider a thin metallic sheet perpendicular to the plane of the paper moving with speed $'v'$ in a uniform magnetic field $B$ going into the plane of the paper (See figure). If charge densities ${\sigma _1}$ and ${\sigma _2}$ are induced on the left and right surfaces, respectively, of the sheet then (ignore fringe effects)
Mark the correct statement